This paper presents the theoretical analysis for the flow driven by surface tension and gravity force in an inclined circular tube. The present study introduces detailed mathematical procedures for Casson viscosity model. The equations of velocity distribution and flow rate are developed to describe the displacement of a non-Newtonian fluid that continuously flew into a circular tube by surface tension. The equation of modified volumetric flow shows the complicated form of (10) due to yield stress term, and the equation of velocity distribution which includes the yield stress and inclination angle of circular tube is composed of terms of r and rc as form of (14).