In this paper, the response of graphite/epoxy laminated composite beams subjected to impact loads without damage, is studied by the use of the developed finite element program. The modified Hertzian contact law considered elasto-plastic process is used to calculate the dynamic responses between the impactor and laminated target. Numerical results are presented to demonstrate the effects on the histories of contact force, deflection, damage energy, strain and stress through the thickness due to stacking sequence. In view of the kinetic energy response, [0/30/0/-30]2S laminate is faster than that of other two laminates due to its flexural stiffness. In special, the distribution of stress through the thickness shows nearly linear despite its discontinuity of stacking sequences for dynamic analysis unlike static analysis in a laminated composites.