We demonstrate optical cross-sectional imaging system implemented with high-resolution interferometry and present oral diagnostic imaging results obtained without any physical sectioning. High-resolution interferometry could be performed with utilizing broadband optical source and employment of beam scanning device to high-resolution interferometer constitutes optical imaging system for non-invasive cross-sectional view at real-time. The optical imaging system is implemented with fiber-optic devices for compactness and optical probe head is realized by using single mode optical fiber and miniaturized actuator, which is properly designed for the application to dental imaging. The basic performance of the optical imaging system, for example, such as resolution, imaging depth, and sensitivity is suggested to prove high-resolution optical imaging performance. Feasibility of the developed optical imaging system performance in the application of dental diagnostic is proved with demonstrating non-invasively obtained cross-sectional images. The imaging quality suggested in the images could be applied to assessment of oral diseases and used for alternative imaging modality to X-ray diagnostic method overcoming disadvantage of low-image resolution. The imaging performance enabling real-time image reconstruction also could be exploited as early oral diagnostic apparatus prior to microscopic observation under H&E staining.