Gamma irradiation has been used in several ornamental plant species to obtain the desired genetic variability. Commercially, ornamental plants with a rich variety of flower colors and uniform shapes are prized and in high demand. Irradiation technology is widely utilized to generate a high number of mutations, which helps introduce new, improved variants in comparison to the control plant. The main purpose is to promote well-adjusted species by customizing some specific features to expand on the desired parameter. Exposure to an optimum dose of gamma irradiation is crucial to ensure the most beneficial mutation density. The effects of dose rates are species-dependent, thereby affecting the probability of inducing favorable attributes, such that they are either not clearly exhibited or are disoriented during the gradual physical development of the plants. To obtain high-quality species within a very limited period, gamma irradiation may present an alternative method to selective screening with its combined application of molecular-based analysis to contribute to mutational changes in plant physiology. Here we review current literature that focuses on the effect of appropriate doses of gamma irradiation and the morphological, functional, and molecular objectives of such irradiation in ornamental plants.