The role of QR code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR codes and the convenience of producing and attaching a lot of information within QR codes have been raised, and many of these reasons have made QR codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. This representative case is the KIVA robot in Amazon. KIVA robots are only operated inside Amazon, but information about them is not exposed to the outside world, so a variety of similar robots are developed and operated in several places around the world. They are applied in various fields such as education, medical, silver, military, parking, construction, marine, and agriculture, creating a variety of application robots. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR codes with the same horizontal and vertical sides, and the error is to create a QR code robot with accuracy to reach within 3mm. This paper focuses on the driving operation techniques during the development of QR code-aware indoor mobility robots.