In order to cope with climate change, the UN Climate Summit announced a policy to reduce carbon emissions to 0% by 2050. As a result, hydrogen energy is attracting attention as a new energy. Hydrogen energy is one of the future clean energy sources and is the most abundant and ideal fuel on Earth that does not emit pollutants. On the other hand, there is a risk of wide explosion range, easy ignition, and fast flame speed. As a result, There is limited use of hydrogen gases, and research is being conducted to safely use hydrogen gases. However, the localization rate of hydrogen-related equipment parts is low and dependence on foreign countries is high. In order to reduce dependence on foreign countries, this study designed and analysis a model of ultra-high pressure relief valve, which is a safety device for hydrogen charging stations. In order to evaluate the structural stability, a spring, a valve disk, a valve guide, and a valve spindle, which are components of an ultra high pressure relief valve, were applied with pressure resistance test and water pressure test criteria according to KS B ISO 19880-3, and analyzed using an Ansys workbench 2021 R1. Through the analysis results, the structural stability of the relief valve under the water pressure test and the pressure resistance test conditions confirmed.