In general, a large mirror without weight reduction in large optical or space telescope systems can increase the system’s weight or lead to significant deformation of the mirror surface. Thus, it is imperative to pursue lightweight design strategies. In this paper, the structure design of a spherical mirror, a diameter of 600mm and a mirror radius of 2,000mm, was investigated to reduce weight and minimize deformation. To establish load paths for internal and external loads, stiffeners were added across the lateral supports. This approach effectively reduced both weight and deformation caused by gravity. Weight reduction and reduction percentages were quantified, and the mirror deformation was evaluated by using finite element analysis (FEA). The proposed structures were compared with honeycomb structures for weight reduction. This evaluation allowed to assess the deformation characteristics and the potential advantages of the proposed structures for lightweight mirrors.