Mathematically modeling photosynthesis helps to interpret gas exchange in a plant and estimate the photosynthetic rate as affected by environmental factors. Notably, the photosynthetic rate varies among leaf vertical positions within a single plant. The objective of this study was to measure the distinct photosynthetic rate of lily (Lilium Oriental Hybrid ‘Casa Blanca’) at the upper, medium, and basal leaf positions. Subsequently, the FvCB (Farquhar-von Caemmerer-Berry) photosynthesis model was employed to determine the parameters of the model and compared it with a rectangular hyperbola photosynthesis model. The photosynthetic rates were measured at different intracellular CO2 concentrations () and photosynthetic photon flux density (PPFD) levels. SPAD values significantly decreased with lowered leaf position. The photosynthetic rates at the medium and basal leaves were lower compared with the upper leaves. FvCB model parameters, and , showed no significant difference between the medium and basal leaves. Estimated photosynthetic rates from derived parameters by the FvCB model demonstrated over 0.86 of R2 compared with measured data. The rectangular hyperbola model tended to overestimate or underestimate photosynthetic rates at high with high PPFD levels or low with high PPFD levels, respectively, at each leaf position. These results indicated that the parameters of the FvCB model with different leaf positions can be used to estimate the photosynthetic rate of lily.