In the present numerical study, the optimal design of cooling fans for cooling towers was investigated. The key design variables selected were the pitch angle and twist angle of the cooling fan, with the pitch angle ranging from 0° to 20°, and the twist angle from 0° to 10°. The objective was to develop a cooling fan capable of actively responding to varying operating conditions; to this end, the twist angle was implemented as a variable camber at the blade tip. The analysis results showed that, under identical pitch angle conditions, increasing the twist angle tended to reduce the stall phenomenon of the cooling fan. Optimization was performed using the pitch and twist angles as design variables, and lift, pressure drop and torque as response variables. Under the specified operating conditions, a combination of a 5° pitch angle and a 10° twist angle yielded the best performance.