생성형 AI는 방대한 데이터를 기반으로 사용자의 요구에 부합하는 콘텐츠를 자동 생성함 으로써 창의성과 생산성을 동시에 향상시키고 있다. 구독경제 기반의 생성형 AI 서비스는 소비자와 기업 모두에게 혜택을 제공한다. 소비자는 높은 초기 비용 없이 지속적으로 서비스를 이용할 수 있으며, 기업은 반복적인 매출과 고객 데이터를 기반으로 서비스 품질을 고도화할 수 있다. 이와 같은 선순환 구조가 안정적으로 유지되기 위해서는 소비자의 지속적인 유료 구독이 필수적이다. 이에 본 연구는 생성형 AI 서비스에 대한 구독의도 형성 요인을 규명하기 위해 기술수용모델(TAM)과 어포던스(Affordance) 이론을 통합한 연구모형을 제시하고 실증 분석을 수행하였다. 생성형 AI 사용 경험이 있는 직장인 134명을 대상으로 온라인 설문 조사를 실시하였으며, 수집된 자료를 SPSS 27.0과 PROCESS macro를 활용하여 상관분석, 다중회귀분석, 그리고 매개효과 분석을 실시하였다. 분석 결과, 어포던스 요인 중 개인화된 도움 제공은 인지된 유용성과 인지된 용이성 모두에 유의한 영향을 미쳤고, 맥락 인지는 인지된 유용성에만 유의한 영향을 미쳤다. 반면 대화의 의인화는 두 인지 요인 모두에 유의한 영향을 보이지 않았다. 또한 인지된 용이성은 인지된 유용성에 정(+)의 영향을 미쳤으며, 두 인지 요인은 모두 이용의도에 유의한 정(+)의 영향을 미쳤다. 특히 이용의도는 구독의도에 가장 강력한 영향을 미치는 핵심 변수로 확인되었고, 인지된 유용성과 용이성은 이용의도를 매개로 구독의도에 간접적인 정(+)의 효과를 보였다. 본 연구는 생성형 AI와 구독경제의 융합이라는 새로운 소비 패러다임에 대한 이론적 기반을 제공함과 동시에, 사용자 경험 중심의 AI 서비스 설계 및 구독형 비즈니스 전략 수립에 실무적 시사점을 제시한다.
Generative AI enhances both creativity and productivity by automatically producing content that aligns with user needs based on vast datasets. When combined with subscription-based business models, generative AI services provide mutual benefits to both consumers and firms. Consumers can continuously access advanced AI services without significant upfront costs, while firms can secure recurring revenue streams and improve service quality through accumulated customer data. To ensure the sustainability of this virtuous cycle, understanding the factors that drive users’ continued subscription intentions is essential. This study proposes an integrated research model incorporating the Technology Acceptance Model (TAM) and affordance theory to examine the determinants of subscription intention for generative AI services. An online survey was conducted with 134 office workers who had prior experience using generative AI services. The collected data were analyzed using SPSS 27.0 and PROCESS macro through correlation analysis, multiple regression analysis, and mediation analysis. The results show that personalized assistance significantly influences both perceived usefulness and perceived ease of use, while context awareness has a significant effect only on perceived usefulness. Conversely, anthropomorphic interaction does not exhibit significant effects on either cognitive factor. In addition, perceived ease of use positively affects perceived usefulness, and both cognitive factors positively influence usage intention. Usage intention was identified as the strongest predictor of subscription intention, while perceived usefulness and perceived ease of use indirectly contribute to subscription intention through usage intention. This study contributes to the theoretical understanding of the emerging consumer paradigm driven by the convergence of generative AI and the subscription economy. It also provides practical implications for designing user-centric AI services and establishing effective subscription-based business strategies.