논문 상세보기

대기중 CO2 농도 증가에 따른 기후변화가 농업기후자원, 식생의 순 1차 생산력 및 벼 수량에 미치는 영향 KCI 등재

Impact of Climate Change Induced by the Increasing Atmospheric CO₂ Concentration on Agroclimatic Resources, Net Primary Productivity and Rice Yield Potential in Korea

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/12622
서비스가 종료되어 열람이 제한될 수 있습니다.
한국작물학회지 (Korean Journal of Crop Science)
한국작물학회 (Korean Society Of Crop Science)
초록

The atmospheric carbon dioxide concentration is ever-increasing and expected to reach about 600 ppmv some time during next century. Such an increase of CO2 may cause a warming of the earth's surface of 1.5 to 4.5~circC , resulting in great changes in natural and agricultural ecosystems. The climatic scenario under doubled CO2 projected by general circulation model of Goddard Institute for Space Studies(GISS) was adopted to evaluate the potential impact of climate change on agroclimatic resources, net primary productivity and rice productivity in Korea. The annual mean temperature was expected to rise by 3.5 to 4.0~circC and the annual precipitation to vary by -5 to 20% as compared to current normal climate (1951 to 1980), resulting in the increase of possible duration of crop growth(days above 15~circC in daily mean temperature) by 30 to 50 days and of effective accumulated temperature(EAT=∑Ti, Ti~geq 10~circC ) by 1200 to 1500~circC . day which roughly corresponds to the shift of its isopleth northward by 300 to 400 km and by 600 to 700 m in altitude. The hydrological condition evaluated by radiative dryness index (RDI =Rn/ ~ell P) is presumed to change slightly. The net primary productivity under the 2~times CO2 climate was estimated to decrease by 3 to 4% when calculated without considering the photosynthesis stimulation due to CO2 enrichment. Empirical crop-weather model was constructed for national rice yield prediction. The rice yields predicted by this model under 2 ~times CO2 climatic scenario at the technological level of 1987 were lower by 34-43% than those under current normal climate. The parameters of MACROS, a dynamic simulation model from IRRI, were modified to simulate the growth and development of Korean rice cultivars under current and doubled CO2 climatic condition. When simulated starting seedling emergence of May 10, the rice yield of Hwaseongbyeo(medium maturity) under 2 ~times CO2 climate in Suwon showed 37% reduction compared to that under current normal climate. The yield reduction was ascribable mainly to the shortening of vegetative and ripening period due to accelerated development by higher temperature. Any simulated yields when shifted emergence date from April 10 to July 10 with Hwaseongbyeo (medium maturity) and Palgeum (late maturity) under 2 ~times CO2 climate did not exceed the yield of Hwaseongbyeo simulated at seedling emergence on May 10 under current climate. The imaginary variety, having the same characteristics as those of Hwaseongbyeo except growth duration of 100 days from seedling emergence to heading, showed 4% increase in yield when simulated at seedling emergence on May 25 producing the highest yield. The simulation revealed that grain yields of rice increase to a greater

저자
  • 李㳎雨(서울대학교 농과대학) | 이변우
  • 申辰澈(농촌진흥청 작물시험장) | 신진철
  • 奉鍾憲(기상연구소) | 봉종헌