논문 상세보기

Effects of Trichostatin A and 5-aza-2’deoxycytidine on Nuclear Reprogramming in Pig Cloned Embryos

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/279992
구독 기관 인증 시 무료 이용이 가능합니다. 4,200원
한국동물번식학회 (The Korean Society of Animal Reproduction)
초록

Low efficiency of somatic cell nuclear transfer (SCNT) is attributed to incomplete reprogramming of transfered nu-clei into oocytes. Trichostatin A (TSA), histone deacetylase inhibitor and 5-aza-2’deoxycytidine (5-aza-dC), DNA methy-lation inhibitor has been used to enhance nuclear reprogramming following SCNT. However, it was not known molec-ular mechanism by which TSA and 5-aza-dC improve preimplantation embryo and fetal development following SCNT. The present study investigates embryo viability and gene expression of cloned porcine preimplantation embryos in the presence and absence of TSA and 5-aza-dC as compared to embryos produced by parthenogenetic activation. Our results indicated that TSA treatment significantly improved development. However 5-aza-dC did not improve development. Presence of TSA and 5-aza-dC significantly improved total cell number, and also decreased the apoptot-ic and autophagic index. Three apoptotic-related genes, Bak, Bcl-xL, and Caspase 3 (Casp3), and three autophagic-re-lated genes, ATG6, ATG8, and lysosomal-associated membrane protein 2 (LAMP2), were measured by real time RT-PCR. TSA and 5-aza-dC treatment resulted in high expression of anti-apoptotic gene Bcl-xL and low pro-apoptotic gene Bak expression compared to untreated NT embryos or parthenotes. Furthermore, LC3 protein expression was lower in NT-TSA and NT-5-aza-dC embryos than those of NT and parthenotes. In addition, TSA and 5-aza-dC treated embryos displayed a global acetylated histone H3 at lysine 9 and methylated DNA H3 at lysine 9 profile similar to the parthenogenetic blastocysts. Finally, we determined that several DNA methyltransferase genes Dnmt1, Dnmt3a and Dnmt3b. NT blastocysts showed higher levels Dnmt1 than those of the TSA and 5-aza-dC blastocysts. Dnmt3a is lower in 5-aza-dC than NT, NTTSA and parthenotes. However, Dnmt3b is higher in 5-aza-dC than NT and NTTSA. These results suggest that TSA and 5-aza-dC positively regulates nuclear reprogramming which result in modulation of apoptosis and autophagy related gene expression and then reduce apoptosis and autophagy. In addition, TSA and 5-aza-dC affects the acetylated and methylated status of the H3K9.

저자
  • Sung Hyun Lee(Department of Animal Sciences, Chungbuk National University)
  • Yong-Nan Xu(Department of Animal Sciences, Chungbuk National University)
  • Young-Tae Heo(Department of Animal Sciences, Chungbuk National University)
  • Xiang-Shun Cui(Department of Animal Sciences, Chungbuk National University)
  • Nam-Hyung Kim(Department of Animal Sciences, Chungbuk National University) Corresponding author