논문 상세보기

Functional Study of N-acetyltransferase 1 (TcNAT1) Involved in Cuticle Tanning Pathway in Tribolium Castaenum

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/287289
모든 회원에게 무료로 제공됩니다.
한국응용곤충학회 (Korean Society Of Applied Entomology)
초록

Insect cuticle is a first physical barrier to protect their body from multifarious environments. Cuticle tanning (sclerotization and pigmentation) is a complex process involves hydroxylation of tyrosine to 3,4-dihydroxyphenylalanine (DOPA), decarboxylation of DOPA to dopamine, N-acylation of dopamine to N-acetyldopamine (NADA) or N-β-alanyldopamine (NBAD), oxidation of NADA and NBAD to their corresponding quinones, and reactions between the quinones or quinone derivatives with cuticular proteins (CPs) resulting in protein cross-linking. N-acetyltransferase (NAT) catalyzes the conversion of dopamine to NADA whose covalent-linkage of CPs is correlated with colorless cuticle (β-sclerotization). In this study, we analyzed functions of TcNAT1 on cuticle tanning of adult Tribolium castaneum by RNAi. Injection of dsRNA for TcNAT1 (dsTcNAT1) had no affect on animal development and growth. However, some of the resulting adults (~70%) showed split elytra that could not cover their abdomen, resulting in improper folding of their hindwings. Interestingly, body color of the mature adults was darker than that of control dsTcVer-treated adults because probably due to the buildup of abnormally high levels of dopamine, which is used for dopamine eumelanin pigment synthesis (black pigment). On elytra and hindwings of these adults, darker pigments were observed around the sensory bristles located at the intervein regions, suggesting that NADA mediated β-sclerotization is occurred in these regions. Similarly, darker pigment was evident at veins of the hindwings of TcNAT1-deficient adults. These results suggest that TcNAT1 plays important roles in cuticle tanning of T. castaneum adult. To characterize enzymatic properties of TcNAT1, furthermore, recombinant TcNAT1 protein expressed in E. coli was purified by utilizing Ni-NTA affinity column chromatography. This work was supported by NRF (NRF-2012R1A2A1A01006467).

저자
  • Bonwoo Koo(Department of Applied Biology, Chonnam National University)
  • Mi Young Noh(Department of Applied Biology, Chonnam National University)
  • Yasuyuki Arakane(Department of Applied Biology, Chonnam National University)