논문 상세보기

A study on Mercury of Component from Compact Fluorescent Lamp

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/341490
서비스가 종료되어 열람이 제한될 수 있습니다.
한국폐기물자원순환학회 (Korea Society Of Waste Management)
초록

Compact fluorescent lamps are strongly encouraged to manage separately in Korea because Compact fluorescent lamps contain mercury. Compact fluorescent lamps have managed as household waste in Korea, however, even though Compact fluorescent lamps contains hazardous material such as mercury. The aim of management of Compact fluorescent lamps separately is to reduce the release of mercury from Compact fluorescent lamp lamps into the environment and to reuse of the glass, metals and other components of Compact fluorescent lamps. The amount of mercury in a fluorescent lamps varies, depending on the type of lamp and manufacturer, but typically ranges between 5 milligrams and 30 milligrams. The mercury content of fluorescent lamps has been reported to be between 0.72 and 115 mg/lamp with an average mercury content of about 30 mg/lamp in 1994. Although manufacturers have greatly reduced the amount of mercury used in fluorescent lamps over the past 20years, mercury is an essential component to fluorescent lamps and can’t be eliminated completely in lamps. In the crushing process, CFL(compact fluorescent lamp) is separated into glass, plastic, ballast, phosphor powder and vapor. Using the crushing technique, concentration of mercury vapor emission from CFL is evaluated. Through the experiments, the efficiency of the crushing and separation for the unit is estimated by measuring the volume of CFL. In this study, the concentration of mercury is analyzed by MVI(Mercury Vapor Indicator) method for vapor in CFL. From the results of mercury distribution for 3 companies, the concentration of mercury in compact fluorescent lamp is less than that in the other type lamps. And phosphor powder has greater than 99% of total mercury amount in CFL and the mercury concentration in phosphor powder is measured between 1,008ppm and 1,349ppm. The mercury concentration in phosphor powder can be changed by the type of company and period of usage. KET and TCLP are carried out for phosphor powder, glass, plastic, ballast and base cap to estimate the hazardous characteristic. From the results of KET and TCLP test for CFL, phosphor powder from CFL should be controlled separately by stabilization or other methods to reuse as a renewable material because the phosphor powder is determined as a hazardous waste. From the results of characteristics of CFL, the carbonization system of CFL should be carried out in the temperature of less than 350℃. The amount of mercury in a fluorescent lamps varies, depending on the type of lamp and manufacturer, but typically ranges between 5 milligrams and 30 milligrams. The mercury content of Compact fluorescent lamps has been reported to be between 0.72 and 115 mg/lamp with an average mercury content of about 30 mg/lamp in 1994. Although manufacturers have greatly reduced the amount of mercury used in fluorescent lamps over the past 20years, mercury is an essential component to fluorescent lamps and can’t be eliminated completely in lamps. In Korea, demonstration for recycling of U type lamps had once begun in the area of Seoul Metropolitan, 2000. In 2004, U type lamps was included as an item in EPR(Extended Producer Responsibility) system. According to Korea Lighting Recycling Association, approximately 38 million Compact fluorescent lamps were recycled in Korea, 2011 because 3 recycling facilities for Compact fluorescent lamps are operated in Korea. Recycling rate of Compact fluorescent lamps in Korea is about 31.0% but about 70% of Compact fluorescent lamps may not manage properly. Hence, discarded lamps release approximately 2 to 3 tons of mercury per year into the environment[6]. In USA, Compact fluorescent lamps has controlled by Universal Waste Rule and merchandises containing mercury prohibited to produce. Also, MEBA(Mercury Export Ban Act) is activated in USA from 2013. According to Association of Lighting and Mercury Recycler, member companies accomplish about 85% of the lamp recycling done each year. In Germany, best available technology (BAT) system for recycling of Compact fluorescent lamps is established and about 20 companies are involved in recycling of Compact fluorescent lamps. In 1994, approximately 70-80% of total Compact fluorescent lamps are recycled in 1994 and Compact fluorescent lamps was included as an item in EPR(Extended Producer Responsibility) system in 1996. In Sweden, MRT System, which was developed by Lumalampan, separated mercury from Compact fluorescent lamps by distillation operation, 1979. Reverse route collection system is active to improve the collection of Compact fluorescent lamps. Compact fluorescent lamps was included as an item in EPR(Extended Producer Responsibility) system in 2001. In Austria, about 40 companies are involved in recycling of Compact fluorescent lamps to recycle glass and ferrous metals. And wastes containing mercury are treated in landfill site by using special container [7,8]. In this study, Compact fluorescent lamps is cut by a end-cutting unit with a cam crusher and base-cap is separated from glass part. In the end-cutting unit, a vacuum system is operating to collect mercury vapor to prevent leaking from the end-cutting unit. First of all, characteristics and major composition of Compact fluorescent lamps are estimated. Through the experiments, it is measured mercury concentration in the parts of Compact fluorescent lamps such as glass tube, phosphor powder, and base cap after separation in the end-cutting unit. Also, it is evaluated mercury emission from Compact fluorescent lamps by measuring the concentration of effluent gas in the end-cutting unit with changing flow rate. Finally, Korea Extraction Method (KET) and TCLP(Toxicity Characteristic Leaching Procedure) test are applied to phosphor powder to verify that phosphor powder is a hazardous waste [9].

저자
  • Seung-Whee Rhee(Dept. of Environment Energy System Engineering, Kyonggi-University)
  • Hun-Su Park(Dept. of Environment Energy System Engineering, Kyonggi-University)
  • Min-Suk Lee(Dept. of Environment Energy System Engineering, Kyonggi-University)
  • Jae-Kyung Kim(Dept. of Environment Energy System Engineering, Kyonggi-University)
  • Hoe-Kyung Jung(Dept. of Environment Energy System Engineering, Kyonggi-University)