A Study for Estimation of Equivalent Mechanical Properties of Materials with Porosity Part I. Isotropic Elasticity in Plane Stress
The demand for materials with porosity is steadily increasing and the need for porous materials is increasing in fields such as chemical engineering and energy storage. In order to minimize trial and error, verifying design validity through finite element method at the design stage has the advantage to verify design validity with low cost. However there are limitations in finite element analysis using porous materials. In this study calculating the equivalent mechanical properties reflecting the porosity was carried out, and the first step was the isotropic elasticity in plane stress condition. The equivalent elastic modulus and the equivalent Poisson's ratio were derived through simulation. Assuming that the voids exist in a two-dimensional symmetrical shape and a constant distribution, the unit cell was defined and the equivalent mechanical properties were calculated. The specimen with same condition were measured through a universal test machine (UTM), the elastic modulus and Poisson's ratio were measured. The similarity between the value obtained through the simulation and the value measured through the experiment was under 5%, so the validity of this simulation was verified. With this result, FEM with porous materials will be used for design.