논문 상세보기

Demonstration Test for Chemical Waste Decomposition & Treatment System (CWDS)

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/430134
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

In the pilot scale test, the two scale-up factors (Electric energy per order EEO, Electric energy per mass EEM) were conducted to design the Chemical Waste Decomposition & Treatment System (CWDS). The CWDS consist of two kind UV lamp reactors to improve the decomposition rate of oxalic acid, which are low pressure amalgam UV lamp and medium pressure UV lamp. The two reactors were connected in series, and the hydrogen peroxide is mixed through a line mixer at the front of the reactor and injected into the reactors. The CWDS was connected with the full system decontamination equipment to purify the residual oxalic acid after chemical decontamination process. The full system decontamination equipment were included Oxidizing Agent Manufacturing System (OAMS), Chemical Injection System (CIS), RadWaste Treatment System (RWTS) to operate the Oxidation/Reduction decontamination process and purify the process water. After decontamination process, the waste water will be cooled down into the 40°C and passed through the UV reactor at 110 gpm with hydrogen peroxide injection. The concentration of waste water is expected oxalic acid 1,700 ~ 2,000 ppm, Iron 5 ~ 20 ppm. As a result of the CBD test in the laboratory with simulated waste liquid, the amount of Low pressure amalgam lamp UV dose required to decompose 95% of oxalic acid in 2 m2 waste water was up to 1,800 mJ/cm2. The amount of medium pressure lamp UV dose was up to 450 mJ/cm2 at the same condition. We conducted demonstration test using 2 m2 waste water after the oxidation/reduction decontamination process, the decomposition rate 95% was obtained by low pressure amalgam UV lamp and medium pressure UV lamp reactor each.

저자
  • Ju-Hyeon Park(KEPCO Korea Plant Service & Engineering (KEPCO KPS))
  • Jung-Hyun Lee(KEPCO Korea Plant Service & Engineering (KEPCO KPS))
  • Sung-Hyun Lee(KEPCO Korea Plant Service & Engineering (KEPCO KPS))
  • Ki-Chul Kim(KEPCO Korea Plant Service & Engineering (KEPCO KPS)) Corresponding author
  • Chung-kyu Lee(KEPCO Korea Plant Service & Engineering (KEPCO KPS))