논문 상세보기

Influence of Effective Thermal Conductivity on the Radiolytic and Chemical Environment Within the CRUD Deposits

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/430286
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

Corrosion products generated from the oxidation of structure materials are deposited on the surface of coolant systems, forming CRUD (Corrosion Related Unidentified Deposits). The CRUD deposition on the fuel surface has influenced the heat transfer through the fuel rod. When CRUD was deposited on a fuel surface, heat resistance may increase, and this increase in heat resistance leads to the increase in temperature distribution from cladding to coolant. Also, the temperature distribution is related to the radiolytic and chemical reactions within the CRUD deposits. This influence may be enough to change the pH distribution within the CRUD deposits. To estimate the influence of thermal resistance, the composition, microstructure, and vapor fraction within the CRUD should be considered, by investigating the thermal conductivity model of CRUD deposits. Therefore, in this study, the CRUD thermal conductivity was studied through the literature study, by considering composition, capillary flow characteristics, and vapor fraction. For the uncertainty parameters, a sensitivity study was conducted to check the degree of influence on thermal conductivity. The effective thermal conductivity was applied to the radiochemistry model within the CRUD deposits and an analysis of the influence in radiolysis reaction within the CRUD deposits with a fixed thickness.

저자
  • Seungjin Seo(Seoul National University (SNU))
  • Hwajeong Han(Soonchunhyang University)
  • Byunggi Park(Soonchunhyang University)
  • Sungyeol Choi(Seoul National University (SNU)) Corresponding author