한국게임학회 논문지 제15권 제4호 (p.69-78)

|게임 보안|
모티베이션 이론을 이용한 온라인 게임 내 부정행위 탐지

키워드 :
Online Game Security(온라인 게임 보안),ERG Theory(ERG이론),Bot(봇),Motivation Theory(동기 부여 이론)

초록

온라인 게임 산업이 급격히 성장함에 따라 경제적 이득을 목적으로 한 악성 행위가 증가되고 있다. 본 논문에서는 온라인 게임 내 악성 행위 중 높은 비중을 차지하는 게임 봇 탐지를 위한 모티베이션 기반 ERG 이론을 적용한 탐지 방법을 제안한다. 기존에 연구된 행위 기반 탐지 기 법들이 특정 행위들을 특성치로 선정하여 분석하였다면, 본 논문에서는 모티베이션 이론을 적 용하여 행위 분석을 수행하였다. 실제 MMORPG의 데이터를 분석하여 본 결과, 온라인 게임 내에서도 정상 사용자는 실제 세계와 마찬가지로 모티베이션과 관련된 ERG 이론이 잘 적용되 는 것을 확인하였다. 반면에, 게임 봇은 정상 사용자와 다르게 특정 목적을 위한 행동 패턴이 나타나기 때문에 모티베이션 이론을 적용하여 탐지할 경우 정상 사용자와는 다른 행동 패턴을 보이는 것을 발견하였다. 이를 통해 ERG 이론을 적용한 봇 탐지 방법을 국내 7위의 규모의 게 임에 적용하여 봇 제재 리스트와 교차 분석한 결과, 99.74% 의 정확도로 정상 사용자와 봇을 분류할 수 있었다.
As the online game industry has been growing rapidly, more and more malicious activities to gain economic benefits have been reported as well. Game bot is one of the biggest problems in the online game industry. So we proposed a bot detection method based on the ERG theory of motivation for the first time. Most of the previous studies focused on behavior-based detection by monitoring patterns of the specific actions. In this paper, we applied the motivation theory to analyze user behaviors on a real game dataset. The result shows that normal users in the game followed the ERG theory of motivation in the same way as it works in real world. But in the case of game bots, the theory could not be applied because the game bot has specific reasons, unlike normal game users. We applied the ERG theory to users to distinguish game bot users from normal users. We detected the game bot with high accuracy of 99.78% by applying the theory.