논문 상세보기

Estimating Net Primary Productivity under Climate Change by Application of Global Forest Model (G4M) KCI 등재

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/321647
서비스가 종료되어 열람이 제한될 수 있습니다.
인간식물환경학회지 (Journal of People Plants and Environment)
인간식물환경학회 (Society For People, Plants, And Environment)
초록

Net primary productivity (NPP) is considered as an important indicator for forest ecosystem since the role of the forest is highlighted as a key sector for mitigating climate change. The objective of this research is to estimate changes on the net primary productivity of forest in South Korea under the different climate change scenarios. The G4M (Global Forest Model) was used to estimate current NPP and future NPP trends in different climate scenarios. As input data, we used detailed (1 km × 1 km) downscaled monthly precipitation and average temperature from Korea Meteorological Administration (KMA) for four RCP (Representative Concentration Pathway) scenarios (2.6/4.5/6.0/8.5). We used MODerate resolution Imaging Spectroradiometer (MODIS) NPP data for the model validation. Current NPP derived from G4M showed similar patterns with MODIS NPP data. Total NPP of forest increased in most of RCP scenarios except RCP 8.5 scenario because the average temperature increased by 5°C. In addition, the standard deviation of annual precipitation was the highest in RCP8.5 scenario. Precipitation change in wider range could cause water stress on vegetation that affects decrease of forest productivity. We calculated future NPP change in different climate change scenarios to estimate carbon sequestration in forest ecosystem. If there was no biome changes in the future NPP will be decreased up to 90%. On the other hand, if proper biome change will be conducted, future NPP will be increased 50% according to scenarios.

저자
  • Sunyong Sung(Interdisciplinary Program in Landscape Architecture, Seoul National University)
  • Forsell Nicklas(Ecosystem Service and Management, International Institute for Applied Systems Analysis) Corresponding author
  • Kindermann Georg(Ecosystem Service and Management, International Institute for Applied Systems Analysis)
  • Dong Kun Lee(Department of Landscape Architecture and Rural Systems Engineering, Seoul National University)