한국재료학회지 제27권 제5호 (p.281-288)

철강산업 슬래그를 이용하여 제조한 바잘트 소재의 특성

Characteristics of Basalt Materials Derived from Recycling Steel Industry Slags
키워드 :
basalt,slag recycling,Kissinger method,crystallinity,mechanical strength.

초록

Abstract In this study, Fe-Ni slag, converter slag and dephosphorization slag generated from the steel industry, and fly ash or bottom ash from a power plant, were mixed at an appropriate mixing ratio and melted in a melting furnace in a massproduction process for glass ceramics. Then, glass-ceramic products, having a basalt composition with SiO₂, Al₂O₃, CaO, MgO, and Fe₂O₃ components, were fabricated through casting and heat treatment process. Comparison was made of the samples before and after the modification of the process conditions. Glass-ceramic samples before and after the process modification were similar in chemical composition, but Al₂O₃ and Na₂O contents were slightly higher in the samples before the modification. Before and after the process modification, it was confirmed that the sample had a melting temperature below 1250 ℃, and that pyroxene and diopside are the primary phases of the product. The crystallization temperature in the sample after modification was found to be higher than that in the sample before modification. The activation energy for crystallization was evaluated and found to be 467 kJ/mol for the sample before the process modification, and 337 kJ/mol for the sample after the process modification. The degree of crystallinity was evaluated and found to be 82% before the process change and 87% after the process change. Mechanical properties such as compressive strength and bending strength were evaluated and found to be excellent for the sample after process modification. In conclusion, the samples after the process modification were evaluated and found to have superior characteristics compared to those before the modification.