한국환경과학회지 제27권 제11호 (p.1095-1104)

|ORIGINAL ARTICLE|
P2O5로 표면 개질한 폐감귤박 활성탄에 의한 Bisphenol A의 흡착 특성

Adsorption Characteristics of Bisphenol A Using Activated Carbon Based on Waste Citrus Peel and Surface-Modified with P2O5
키워드 :
Adsorption characteristics,Bisphenol A (BPA),Waste citrus peel based activated carbon,P2O5,Surface modification

목차

Abstract
1. 서 론
2. 재료 및 방법
  2.1. 실험재료
  2.2. 실험방법
3. 결과 및 고찰
  3.1. 흡착평형시간
  3.2 활성탄 및 표면개질 활성탄의 BPA에 대한 흡착 파라미터 산출
  3.3. 표면개질 활성탄의 BPA 흡착능에 미치는 영향인자
4. 결 론
REFERENCE

초록

The adsorption characteristics of bisphenol A (BPA) were investigated using activated carbon based on waste citrus peel (which is abandoned in large quantities in Jeju Island), denoted as WCP-AC, and surface-modified with various P2O5 concentrations (WCP-SM-AC). Moreover, coconut-based activated carbon (which is marketed in large amounts) was surface-modified in an identical manner for comparison. The adsorption equilibrium of BPA using the activated carbons before and after surface modification was obtained at nearly 48 h. The adsorption process of BPA by activated carbons and surface-modified activated carbons was well-described by the pseudo second-order kinetic model. The experimental data in the adsorption isotherm followed the Langmuir isotherm model. With increasing P2O5 concentration (250-2,000 mg/L), the amounts of BPA adsorbed by WCP-SM-AC increased till 1,000 mg/L of P2O5; however, above 1,000 mg/L of P2O5, the same amounts adsorbed at 1,000 mg/L of P2O5 were obtained. With increasing reaction temperature, the reaction rate increased, but the adsorbed amounts decreased, especially for the activated carbon before surface modification. The amounts of BPA adsorbed by WCP-AC and WCP-SM-AC were similar in the pH range of 5-9, but significantly decreased at pH 11, and increased with increasing ionic strength due to screening and salting-out effects.