시설원예ㆍ식물공장 Vol.28 No.4 (p.358-365)

3차원 영상을 이용한 원예산물의 크기와 플러그묘의 평균초장 추정

Estimation of the Dimensions of Horticultural Products and the Mean Plant Height of Plug Seedlings Using Three-Dimensional Images
키워드 :
3D sensor,depth information,stereo vision,ToF camera,깊이 정보,3차원 센서,스테레오비전,ToF 카메라

목차

Abstract
서 언
재료 및 방법
   1. 실험 재료
   2. 3차원 영상 측정 시스템 구성 및 영상 획득
   3. 3차원 영상처리
   4. 원예산물의 크기 및 플러그묘의 평균 초장 결정
결과 및 고찰
   1. 3차원 영상을 이용한 원예산물의 둘레와 높이 결정
   2. 3차원 영상을 이용한 플러그묘의 평균초장 추정
적 요
Literature Cited

초록

본 연구는 3차원 영상을 이용하여 원예산물의 크기와 플러그묘의 평균초장을 결정하고자 수행되었다. 3차원 영 상을 획득하고자 ToF 카메라와 스테레오비전 카메라를 사용하였다. 본 연구의 3차원 영상 획득용 실험 재료로서 수박, 사과, 배, 단호박, 오렌지의 원예산물과 수박, 토마토 및 고추 플러그묘를 사용하였다. 플러그묘의 평균 초장을 결정하는 지표로서 기존의 측정 기준 대신에 수정초장이 제시되었다. 스테레오비전 영상에 비해서 ToF 영상을 이용한 경우에 원예산물의 크기와 플러그묘의 평균초장 오차가 작게 나타났다. 꼭지가 있는 원예산물을 제외할 경우 ToF 영상을 이용한 원예산물의 둘레와 높이의 오차는 각각 0.0-3.0%, 0.0-4.7%로 나타났다. 또한, 플러그묘의 평균 초장에 대한 오차는 0.0-5.5%로 나타났다. 본 연구를 통해 서 3차원 영상을 이용한 원예산물의 크기와 플러그묘에 대한 초장 추정의 가능성을 확인하였다. 더구나, 본 연구에서 시도된 방법은 3차원 영상으로부터 물체와 배경의 효과적인 분리, 이상치의 제거 등에 활용될 것이다.
This study was conducted to estimate the dimensions of horticultural products and the mean plant height of plug seedlings using three-dimensional (3D) images. Two types of camera, a ToF camera and a stereo-vision camera, were used to acquire 3D images for horticultural products and plug seedlings. The errors calculated from the ToF images for dimensions of horticultural products and mean height of plug seedlings were lower than those predicted from stereo-vision images. A new indicator was defined for determining the mean plant height of plug seedlings. Except for watermelon with tap, the errors of circumference and height of horticultural products were 0.0-3.0% and 0.0-4.7%, respectively. Also, the error of mean plant height for plug seedlings was 0.0-5.5%. The results revealed that 3D images can be utilized to estimate accurately the dimensions of horticultural products and the plant height of plug seedlings. Moreover, our method is potentially applicable for segmenting objects and for removing outliers from the point cloud data based on the 3D images of horticultural crops.