상수관망시스템의 운영목적은 탄력성을 높여 각종 비정상상황에 유연하게 대처할 수 있는 방향으로 점차 변화하고 있으며 이에 따라 비정상상황에 따른 단수구역 발생에 대한 사후대책 대비를 통한 탄력성 향상이 필수적이다. 이를 위한 가장 효율적인 방법은 수계전환에 따른 비상공급 수원 확보이며, 비상관로를 통하여 인접 배수블록으로부터 단수된 구역에 용수를 공급할 수 있다. 성공적인 비상연계 운영을 위해서는, 수리학적 해석을 통하여 시공간적인 측면에서의 공급성능을 평가해야 한다. 비상연계 시, 공간적인 범위를 결정하는 주요 요소는 관경, 위치 및 관저고와 같은 비상관로에 해당하는 제원이며, 시간적인 범위를 결정하는 주요 요소는 연계배수지의 용량과 정수장에 공급 가능한 추가수량이다. 본 연구에서는 A 시의 상수관망에 대하여 배수지 1지에 문제가 발생하여 타 배수지들로부터 비상연계를 받는 시나리오에 대하여 모의를 진행하였다. 배수지의 저류량 및 유입량에 대한 모의를 위하여 Advanced-Pressure Driven Analysis 모형을 사용하였으며, 수리해석 결과를 바탕으로 공급범위기준지표 및 공급시간기준지표를 산정하여 연계공급성능에 대한 다각도적인 평가를 진행하였다. 이에 비상연계에 대하여 소비자들이 실제 체감하는 공급성능을 시공간적인 측면에서 파악할 수 있었으며, 설계제원의 타당성에 대한 검토가 가능하였다. 이는 비상연계 성능향상을 위한 구조적 대책 및 비구조적 대책 수립에 대한 의사결정에 용이하게 활용될 수 있을 것으로 기대한다.
강수량 관측 자료에 기초한 유출해석모형을 기반으로 하는 수위기반 홍수예측시스템으로는 짧은 도달시간과 국지성 집중호우로 발생하는 중소하천의 홍수에 대처하기 위한 충분한 예경보 시간을 확보하기 어렵다. 본 연구에서는 홍수예보 선행시간을 확보하기 위해 강우정보만으로도 홍수예보가 가능한 수위노모그래프를 개발하였다. 홍수예보 기준을 경계, 대피의 2단계로 구분하여 기준홍수위를 산정하고 다양한 홍수사상을 반영하기 위해 가상 시나리오를 설정하여 강우조건별 강우량과 지속시간을 선정하였다. 또한 소하천 횡단면 자료와 Manning 공식을 이용하여 수위-유량 관계 곡선을 개발하고 소하천 유역면적비를 전이하여 강우-첨두유출곡선을 산정하였다. 가상 시나리오에 따른 강우정보와 홍수량을 이용하여 전남 나주시에 위치하고 있는 정광천과 소노동천을 대상으로 수위노모그래프를 개발하였다. 수위노모그래프를 기반으로 하는 홍수예보기법은 자연유역 중소하천의 홍수예보 방법으로 활용도가 높을 것으로 판단된다.
상수관망의 운영에 있어서 핵심적인 사항 중의 하나는 관망의 압력균등화이다. 관망의 압력균등화는 시간과 공간적으로 이루어져야 하며 이를 위한 대표적인 방법은 가압장을 설치하는 것이다. 가압장은 관말단에 잔류수압(Residual Pressure Head)이 부족할 것으로 예상될 경우 용수에 추가적인 에너지를 가하여 원활한 용수공급을 가능하게 하는 시설이다. 그러나 가압장에는 펌프를 사용하기 때문에 지속적인 운영비용이 발생하고 기계적인 고장에 취약한 단점을 가지고 있다. 이와 같은 가압장의 단점을 보완하기 위하여 배수관망내에 탱크(In-line Tank)를 설치하는 것이 대안이 될 수 있다. 탱크의 초기투자 비용은 가압장보다 크지만 유지비용이 적고, 고장에 따른 용수공급 중단이 될 가능성이 낮다. 또한, 관파괴에 의한 단수발생시 탱크 인접지역에 비상용수원으로 활용될 수 있다. 그러나 시설비나 부지 문제로 인하여 배수관망에 많은 수의 탱크를 설치하기는 어렵다. 이에 본 연구에서는 배수관망내 필요한 탱크의 개수에 따라 적정배치를 결정할 수 있는 방법론을 제시하였다. 즉, 예산이나 설치부지 등의 제한으로 설치가능한 탱크의 수가 결정되면 이를 최적으로 배치할 수 있는 방법론을 의미한다. 이를 위한 목적함수로 시공간적 관망내 압력 균등지표(Temporal and Spatial Pressure Evenness Index, TSPEI)를 제시하였다. TSPEI 산정은, 먼저 24시간의 Extended Period Simulation을 통하여 절점별로 압력의 일변동(일최대압력-일최소압력)을 산정하고, 두번째로 모든 절점의 압력 일변동을 합산하여 구한다. 이때 가능한 탱크 조합중 TSPEI가 가장 작은 조합이 최적조합이 된다. 제안된 방법을 샘플관망(Mays' network)을 대상으로 적용성을 검증하였다. 그 결과 설치 가능한 탱크의 수를 2개, 3개, 4개로 가정하여 각각의 경우에 대해 최적탱크조합을 산정하였으며, 각각의 탱크 조합에서 일관된 경향이 나타남을 확인하였다.
지상 강우자료의 공간 변동특성은 돌발홍수 예측의 정도를 결정짓는 중요한 부분이다. 이에 본 연구에서는 지상 강우관측망의 공간적 분포특성이 레이더 보정에 미치는 영향을 검토하였다. 지상 강우관측소의 공간적 분포와 레이더 강우의 보정은 최근린 지수와 G/R 비를 이용하였으며, 이를 평창강 유역에 적용하였다. 대상유역 내에는 총 23개의 강우관측소가 위치해 있으며, 이중 10개의 강우관측소를 무작위로 선택하였다. 이때 선택된 강우관측소 조합(총 1,144,066개)을 최근린 지수를 이용하여 공간분포가 가장 좋은 경우와 가장 왜곡된 경우로 구분하고, 각 경우에 대한 레이더 보정 결과를 비교하였다. 보정된 레이더 강우와 지상 강우관측소의 차이는 ME(Mean Error)와 RMSE(Root Mean Squared Error)를 이용하여 비교하였다.
그 결과 공간분포가 우수한 경우 ME와 RMSE가 공간분포가 왜곡된 경우에 비해 상대적으로 작게 분석됨을 확인하였다. 이는 레이더 강우보정에 있어 유역내의 관측소의 개수뿐만 아니라 유역내의 관측소의 공간분포 역시 중요한 요소임을 확인하였다. 즉, 유역내의 관측소의 개수가 많더라도 공간적으로 왜곡된 경우 적절한 레이더 보정이 힘들어 지는 것을 의미한다. 아울러 공간적으로 잘 분포된 강우관측망을 이용하여 레이더 강우를 보정할 경우 편의와 불확실성은 유역 내 전체 지상 강우관측소를 이용한 경우만큼이나 충분히 줄일 수 있을 것으로 판단된다. 그러나 본 연구에서는 대상 강우관측소의 개수를 10개소로 한정하여 분석한 결과로 현재로서는 몇 개의 강우관측소를 선택하였을 때 레이더 보정 있어 가장 유리한지는 파악하기 쉽지 않다.
일반적으로 레이더 보정시 유역 내 전체 강우관측소를 대상으로 하는데 유역내의 전 강우자료를 적용하는 게 과연 적절한 방법인지에 대해서는 추후 논의할 필요가 있다. 아울러 본 연구의 성과는 기상관측소의 제한된 여건 속에서 관측망의 효율적 운영을 통해 강우자료의 품질 향상과 더불어 홍수예경보 시스템의 질적 향상에 기여할 수 있을 거라 판단된다.
면적평균강우량의 산정은 가용 수자원의 정확한 양을 파악하고 강우-유출해석에 필수적인 입력자료이기 때문에 매우 중요하다. 이와 같은 면적평균강우량의 정확한 산정을 위한 필수적인 조건은 강우관측망의 균일한 공간적 분포이다. 본 연구에서는 보다 향상된 유역 면적평균강우량 산정을 위한 강우관측망의 공간분포 평가방법론을 제시하고, 이를 5대강 유역에 적용하였다. 강우관측소의 공간적 분포 특성은 최근린 지수(nearest neighbor index)를 이용하여 정량화하였다. 유역별 강우관측소의 공간적 분포가 면적평균강우량 산정에 미치는 영향을 평가하기 위하여 2005년~2014년의 강우사상에 대해 산술평균법, 티센가중법, 추정이론을 이용하여 면적평균강우량을 산정하고 각 경우에 대해 추정오차를 평가하였다. 적용 유역에 대해 수문학적 유출특성을 고려하여 분할된 중유역을 바탕으로 강우관측소의 공간적 특성을 평가한 결과 국토교통부의 강우관측망은 최근린 지수가 1이상으로 공간적 분포가 상당히 분산되어 있음을 확인하였다. 이러한 결과는 국토교통부의 강우관측소 설치 목적인, 즉, 강우-유출 해석의 입력자료인 면적평균강우량을 정도 있게 추정하기 위한 목적에 상당히 배치된다. 아울러 면적평균강우량의 추정오차를 공간분포가 우수한 중유역과 상대적으로 떨어지는 중유역에 대해 산정한 결과 공간분포가 떨어지는 중유역에서 상대적으로 면적평균강우량의 오차가 더욱 크게 산정됨을 확인하였다. 이는 공간적 변동성이 큼으로 인해 면적평균강우량의 추정에 큰 오차가 포함되기 때문이다. 면적평균강우량 산정 방법별 가중치를 산정한 결과 공간분포가 우수한 유역에서는 가중치의 편차가 작아 공간적 변동성이 작음을 재확인하였다. 향후 관할 기관별 목적에 의해 강우관측망을 평가한다면 보다 설득력이 있는 관측망 평가가 가능할 것이다.
관거로 유입되는 토사유출은 도시 내배수시스템의 원활한 우수배제 능력을 악화시키는 대표 원인 중 하나로 지목되고 있으며, 기후변화 및 도시화로 인한 그 문제가 나날이 증가하고 있다. 기존 자연지역을 포함한 인근지대 및 개발지역의 경우 발생하는 토사유출에 대한 거동 및 처리를 예측한 실험적인 연구들은 활발히 진행되었으나, 이와 달리 관거 통수능 부족을 유발하는 퇴적과 이를 고려한 하수관거 적정 설계기법 연구는 아직 미흡한 실정이다. 따라서 본 연구에서는 이러한 관거 내 토사적체에 따른 설계방안의 시발점으로써 가상의 관망을 구성하고 각 관거의 경사 조정에 따른 관내 토사 적체양상의 변화를 분석하고자 하였다. 이때, 구성한 가상의 관망의 경우 도심지 소유역이라 가정하고 경사조정에 따른 관내 토사 적체량 저감을 위한 개선된 우수관망을 구성하고자 하였다. 이때 각 가상관망의 경우 맨홀절점으로 유입되는 토사입경을 단순화하여 적용하였으며, 실제 맨홀을 통해 관거로 유입되는 토사의 직경을 최대 50mm로 가정하고 모의함으로써 유입토사의 입경별 관거내 토사 적체 양상을 비교·검토하였다. 관내 토사량 모의시 고려해야하는 관내 축적 및 쓸림의 형태는 일반적으로 강우에 따라 그 패턴이 반영되는 Power-Linear식을 반영함으로써 관거별 유속 및 유량 변화에 따른 소류 및 부유의 형태가 반영되도록 모의하였다. 다만, 실제 관망의 설계에 있어서는 이상의 분석 결과들을 고려하여 전체 관로에 대한 주요 구간별 관로 구배의 효과적인 조정 및 노선 구성이 이루어져야 할 것이며, 이를 효과적으로 설계하기 위해서는 최적화 기법의 적용이 필요할 것으로 판단된다.
강우관측망 평가는 가용한 수자원의 정확한 양을 파악하기 위해, 또한 강우-유출의 해석에 있어서 입력자료로 사용되는 면적평균강우량의 적절한 추정을 위해 중요하다. 따라서 강우관측망의 평가와 보완은 유역의 전반에 걸쳐 내린 면적평균강우량을 산정하기 전에 반드시 고려되어야 할 부분이다. 관측소 설치의 다양한 목적인 면적평균강우량의 정도 있는 추정을 고려하면 강우관측소는 공간적으로 균등하게 설치된 경우가 가장 이상적이다. 이에 본 연구에서는 보다 향상된 유역 면적평균강우량 산정을 위한 평가방법론을 제시하고, 4대강 유역 및 섬진강 유역에 대해 강우관측망의 공간적 특성을 파악하였다. 강우관측소의 공간적 분포 특성은 최근린 지수(nearest neighbor index)를 이용하여 정량화하였다. 아울러 2013년의 강우사상에 대해 산술평균법, 티센법, 추정이론을 이용하여 면적평균강우량을 산정하고 각 경우에 대해 오차를 평가하였다. 그 결과 공간분포가 우수한 유역은 면적평균강우량의 추정오차가 상대적으로 작으며, 반대로 공간분포가 왜곡된 유역의 경우는 상대적으로 추정오차가 큼을 확인하였다.
강우량은 관측소의 설치고도에 따라 관측량의 편차가 심하며, 이로 인해 도시지역과 산지지역의 강우발생 특성이 다르다. 이로 인해 산지 돌발홍수가 자주 발생하고 있으며, 따라서 산악 지역의 경우 강우관측소의 밀도가 높아야 한다. 강우관측소의 고도를 고려한 관측망의 평가는 유역평균강우량 산정 및 레이더 자료의 보정에 있어 중요한 과정이 된다. 이에 본 연구에서는 강우관측소의 설치고도를 고려한 강우관측망을 평가방법론을 제시하였다. 강우관측소의 설치고도를 고려한 강우관측망 평가를 위해 고도별 면적에 해당되는 관측소 설치밀도의 변동계수(CV: Coefficient of Variation)를 이용하였다. 변동계수는 자료의 표준편차와 평균의 비를 의미하며 표준편차를 평균으로 나누어 간단히 산정할 수 있다. 일반적으로 변동계수가 작으면 자료의 분포가 균일(고도별로 설치된 관측소가 일정)하다고 판단하며, 반대로 변동계수가 크면 자료의 편차가 심해 고도별도 설치된 강우관측소의 밀도가 일정하지 않다고 판단할 수 있다.
강우관측소 설치의 다양한 목적 중 면적평균강우량의 정도 있는 추정을 고려하면 강우관측소는 공간적으로 균등하게 설치된 경우가 가장 이상적이다. 아울러 산지효과를 파악하기 위해서는 강우관측소의 고도별 설치밀도 파악이 필수적이다. 이에 본 연구에서는 강우관측소의 공간적 분포특성과 강우관측소의 고도별 특성을 동시에 고려하기 위해 유클리디언 거리를 이용하여 2개의 목적함수를 통합하였다. 강우관측소의 공간적 특성은 최근린지수를 이용하여 정량화하였으며, 관측소의 고도별 설치밀도의 특성은 변동계수를 이용하여 평가하였다. 이를 4대강 유역에 대해 적용하여 유역별 강우관측망을 평가 및 비교하였다.
기후변화의 영향으로 인하여 물 부족이 심화되고 있는 상황에서 이수기능이 있는 다목적댐은 유역의 가뭄상황에 대응하기 위한 가장 중요한 역할을 수행하고 있다. 따라서 기후변화를 고려하여 다목적댐의 용수공급에 대한 신뢰도의 평가는 미래 수자원계획을 수립하기 위한 중요한 자료가 될 것이다.
본 연구에서는 우리나라에서 가장 규모가 있는 한강유역내 소양강댐과 충주댐을 대상으로 설정하였다. 유역의 기후 변화 영향 검토를 위하여 IPCC에서 제시하고 있는 3개의 기후변화 시나리오(A2, A1B, B1)와 3개의 기후모형(CNRM, UKMO, IPSL)의 결과로 조합된 9개의 기후변화 시나리오를 구성하여 유역규모에서 기상자료를 생산하였고 장기유출모형인 SWAT 모형을 구축하여 미래 유출량을 모의하였다. 그리고 수자원장기종합계획(2006)에서 제시하고 있는 고수요, 기준수요, 저수요에 대한 3개의 미래 물수요 시나리오를 통하여 유역의 수요 자료를 구성하여 총 27개의 기후변화-물수요 시나리오를 바탕으로 한강유역에 대한 K-WEAP 모형을 이용하여 소양강댐과 충주댐의 미래 용수공급 신뢰도를 평가하였다. 대상 댐에 대한 저수량 및 용수공급가능용량을 기준으로 저수지의 용수공급에 대한 안정성을 검토한 결과 소양강댐과 충주댐은 비교적 안정적으로 용수 공급이 가능한 것으로 검토되었다. 하지만 고수요 시나리오에서 저수용량이 저수량 이하로 떨어지는 것으로 모의되어 극한 가뭄이 발생할 경우 용수 공급에 문제상황이 발생할 가능성이 있는 것으로 추정되었다. 그리고 저수용량의 미래 추세선을 작성한 결과 소양강댐과 충주댐에서 저수용량이 감소하는 경향이 있는 것으로 나타났다. 이는 기후변화의 영향으로 미래 댐에서 저수용량을 안정적으로 확보하는데 제한적인 요소로 작용할 수 있음을 시사하는 결과라고 판단되었다.
강우관측소로부터 수집된 강우량 자료는 강우-유출 해석모형, 다양한 재해 예경보 시스템(disaster forecasting and warning system)등의 입력자료로 이용된다. 현재 여러 관할기관(the competent authorities?)에서는 악기상의 감시(Monitoring of severe weather), 홍수 예경보(flood forecasting and warning system), 다목적댐(multipurpose dam)의 관리 및 운영을 목적으로 강우관측소를 설치 운영중에 있다. 강우관측망을 평가하는 기법들로는 엔트로피 이론, 주성분회귀분석(principle component regression anlysis), 상관성 분석(correlation analysis), 평균제곱근오차 분석(RMSE analysis) 등이 있으며, 주로 엔트로피 이론에 의해 평가되고 있다. 그러나 엔트로피 이론을 통한 강우관측망 평가는 정보전달량(total information)의 크기만을 이용하여 강우관측망을 평가하는 방법으로, 단순히 관측자료의 특성만이 고려되는 한계가 있다. 그러나 경우에 따라 중요한 관측소가 단지 정보전달량이 작다는 이유로 최적 관측망에서 배제(exclusion) 될 가능성이 있다.
관측소 설치의 다양한 목적 중 면적평균강우량(area average rainfall)의 정도 있는 추정을 고려하면 강우관측소는 공간적으로 균등(uniform)하게 설치된 경우가 가장 이상적이다. 따라서 관측자료의 특성과 면적평균강우량을 산정을 위한 공간적 특성이 동시에 반영된 경우가 최적의 관측망이라 할 수 있다. 이에 본 연구에서는 낙동강 임하댐 유역을 대상으로 엔트로피 이론(혼합분포 적용, mixed distribution)과 관측소의 공간적 분포를 동시에 고려하여 강우관측망을 평가하였다. 혼합분포를 이용하는 강우관측망 평가는 연속분포(continuous distribution)를 이용하는 경우 비해 강우의 시공간적 간헐성(rainfall intermittency in time and space)을 고려할 수 있다는 장점이 있다.
아울러 강우관측소(raingauge station)의 공간적 분포 특성(spatial distribution characteristics)은 최근린 지수(nearest neighbor index)를 이용하여 정량화(quantification)할 수 있으며, 최근린 지수는 임의의 점에 가장 가까운 인접 점들 간의 거리 특성을 이용하는 방법으로 점의 분포를 보다 지리적(geographically)으로 파악할 수 있다. 최근린 지수를 이용하여 강우관측소의 공간적 특성을 파악한 후, 이를 바탕으로 강우관측소의 등급을 결정하였다. 엔트로피의 최대 정보전달량(maximum amount of total information of entropy) 및 강우관측소의 공간적 특성(spatial characteristics)을 동시에 고려하기 위해 유클리디언 거리(euclidean distance)를 이용하여 2개의 목적함수(objective functions)를 통합하였으며, 이를 MOGA(Multi Objective Genetic Algorithm)를 이용하여 최적관측망(optimal raingauge network)을 선정하였다. 그 결과 MOGA를 이용하여 관측망을 평가한 경우, 엔트로피 이론만을 적용했을 때보다 선정된 최적관측소가 보다 공간적으로 분산됨을(dispersed) 확인하였다. 이는 강우관측소의 공간적 분포와 자료의 특성이 동시에 반영된 결과이다.
기후변화는 유역의 수자원시스템에 직접적으로 영향을 미치고 있다. 특히 홍수와 가뭄의 발생빈도와 강도가 증가하고 있으며 이는 수자원관리에 더욱 큰 어려움을 가중하고 있다. 또한 기후변화와 유역의 환경변화와 같이 다양한 불확실한 요소에 의하여 미래 수자원 계획의 수립에 많은 한계가 있는 것이 사실이다. 따라서 본 연구에서는 전지구적으로 변화하는 기후변화와 유역내 사회환경요소의 변화에 의한 물 수요량의 변화를 함께 결합하여 낙동강 유역을 대상으로 불확실성 기반의 미래 물 부족량을 추정하고자 하였다.
우선 유역의 기후변화 영향 검토를 위하여 IPCC에서 제시하고 있는 3개의 기후변화 시나리오(A2, A1B, B1)와 3개의 기후모형(CNRM, UKMO, IPSL)의 결과로 조합된 9개의 기후변화 시나리오를 구성하여 유역규모에서 기상자료를 생산하였다. 그리고 장기유출모형인 SWAT 모형을 구축하여 미래 유출량을 모의하였고 이의 자료를 물수지 모형인 K-WEAP 모형의 용수공급량에 대한 입력자료로 활용하였다. 그리고 수자원장기종합계획(2006)에서 제시하고 있는 고수요, 기준수요, 저수요에 대한 3개의 미래 물수요 시나리오를 통하여 유역의 수요 자료를 구성하였다. 따라서 총 27개의 기후변화-물수요 시나리오를 바탕으로 낙동강 유역에 대한 미래 물 부족량을 추정하였다.
2001-2050년 까지 약 50년 동안 모의기간에 대하여 현재(2001-2020년), 단기(2020-2030), 중기(2031-2040), 장기(2041-2050)로 구분하여 비교한 결과 낙동강 유역의 경우 미래 물 부족량이 지속적으로 증가할 것으로 예상되었다. 따라서 낙동강 유역의 경우 미래 가뭄에 대한 대응 또는 적응 계획을 마련해야 할 필요가 있다.
상수관망에서 관파괴가 발생할 경우 제수밸브의 차폐를 통하여 일정 부분의 상수관망이 다른 부분으로부터 격리되게 된다. 이러한 영역을 segment라고 정의하고 이에 대한 다양한 연구가 진행되었다. segment에 포함되는 상수관은 물흐름이 차단되기 때문에 단수가 발생하게 된다. 또한 segment의 차폐에 의해서 추가적으로 단수가 되는 영역이 발생할 수 있고 이러한 영역을 unintended isolation(UI)으로 정의된다. 상수관망을 운영하는 측면에서 관파괴는 피할 수 없는 문제이기 때문에 관파괴가 발생할 경우 단수에 의한 피해를 최소화하는 것이 중요하다. 이를 위해서는 대규모 피해를 야기하는 대규모 segment가 발생하지 않도록 해야 한다. 그러나 대규모 segment는 상수관망의 구조(water supply network topology)와 제수밸브의 배치에 따라 발생한다. 따라서 본 논문에서는 이러한 대규모 segment를 파악하고 적절한 위치에 제수밸브를 추가하여 대규모 segment를 분할하는 방안을 제시하여 관파괴에 따른 상수관망의 피해를 최소화하는 방안을 제시하였다. 대규모 segment 분할을 위한 모형은 네가지 모듈로 구성되어 있다. 첫 번째는 상수관망에 존재하는 모든 segment를 정의하고 segment와 연관된 UI를 정의하는 모듈이다. 두 번째 모듈은 정의된 segment별로 단수피해를 정량화하여 segment별 등급을 부여하는 모듈이다. 세 번째는 단수피해기준 대규모 segment별로 분할을 위한 제수밸브 위치 결정 모듈이다. 네 번째 모듈은 추가된 제수밸브에 의한 상수관망 피해 저감효과를 분석하는 상수관망 신뢰도 산정 모듈이다. 세 번째 모듈의 경우 수학적인 방법이 아닌 상수관망 운영주체가 직접 적용할 수 있도록 다섯 가지 기준을 제시하여 적정 제수밸브 위치를 결정하도록 하였다. 제안된 모형을 이스라엘의 실제 상수관망에 적용하여 적용성을 검증하였다.
상수관망의 노후화에 따라 관파괴와 같은 상수관망의 용수공급 성능을 저하시키는 사고가 자주 발생하게 된다. 이때 파괴부분의 수리나 유지보수를 위해서 물의 흐름을 차단해야 하며 이를 위해서 제수밸브를 차폐하게 된다. 제수밸브는 상수관망 전체에 넓게 분포하고 있으며 설치개수도 관망의 크기에 따라 만개 이상이 설치되어 있다. 이러한 이유로 제수밸브의 유지보수에는 많은 시간과 노력이 필요하다. 제한된 인력과 비용으로 최대의 효과를 얻기 위해서는 제수밸브의 중요도를 평가, 등급화 한 후 중요한 제수밸브들을 우선적으로 관리하는 것이 효율적이다.
본 연구에서는 제수밸브의 중요도 등급을 결정하는 기법을 다수의 실제 상수관망에 적용하여 제수밸브별 상대적 중요도를 산정하고 산정된 결과를 분석하여 실제 상수관망에서 제수밸브 중요도의 특성을 파악하고자 하였다. 상수관의 관파괴에 의한 단수의 피해는 단수인구로 정량화하였으며 이를 위해서 segment 및 unintended isolation을 전체 상수관망을 대상으로 결정하였다. 이를 바탕으로 제수밸브의 중요도는 VII(Valve Importance Index)로 정량화 되었다. 적용된 실제 상수관망은 국내 10개 중블록, 국외 3개 관망이다.
제수밸브의 중요도 특성 파악결과, 배수지에 가까운 제수밸브와 같이 명백하게 중요한 밸브 이외에도 관망의 중앙부분에 위치한 제수밸브도 중요한 경우가 많았으며 관망의 구조적인 연결성에도 많은 영향을 받고 있음을 확인하였다.
최근의 기후변화에 따른 이상가뭄 발생가능성의 증대와 상수원 오염사고 등으로 인하여 상수관망에 의한 물공급의 중단현상이 자주 발생하고 있다. 상수관망에서 제한급수를 실시하는 이유는 확보된 원수의 양이 절대부족한 경우가 가장 많다. 2008년부터 2009년 초까지 태백권 제한급수는 이 지역의 상수원인 광동댐의 저수량 감소에 기인하며 이는 겨울 가뭄이 심화되었기 때문이다. 이와 같이 제한급수를 시행해야할 상황이 발생하면 급수량을 평시대비해서 줄이게 되며 감소된 급수량에 따라 피해가 발생하게 된다. 따라서 이와 같이 제한된 급수량을 효율적으로 활용하게 되면 기왕에 발생하는 제한급수에 따른 피해를 최소화 할 수 있을 것이다.
본 논문에서는 블록화 시스템으로 구성된 상수관망을 대상으로 개별 블록을 대상으로 제한된 양의 물공급 우선순위를 결정하여 제한급수에 따른 영향을 최소화 할 수 있는 방안을 제시하였다. 제안된 모형의 구성은 블록별 물 수요 특성을 고려하여 선취적 우선순위(Preemptive priority)를 설정한 후 선취적 목표계획(Preemptive Goal Programming)으로 최적해(제한급수의 피해의 최소화 또는 제한급수 효과의 최대화)를 도출하도록 하였다. 수요의 선후 관계가 불분명할 경우 AHP로 가중치를 부여하여 결정하도록 하였다. 목적함수는 모든 블록의 수요 미충족에 대한 벌점의 합을 최소화하도록 식을 구성하였고 주요제약식(constraint)은 배수지의 공급량, 블록별 흐름량, 미충족량 산정등으로 하였다.
수요의 우선순위 요소는 실제 상수관망을 운영하는 지자체와 수자원공사 연구소의 전문가를 대상으로 인터뷰를 통하여 결정하였고 제안된 모형을 가상 블록을 대상으로 적용하여 적용성을 검증하였다. 추후 실제 상수도 사업소 자료를 바탕으로 모형을 적용할 예정이다.
중소하천은 호우발생시 급격한 하천수위상승으로 인해 하천에 위험상황이 발생하게 된다. 따라서 중소하천의 홍수예경보는 대규모 하천의 홍수예경보와 달리 강우-유출모형을 기반으로 하기 어렵다. 이는 중소하천 유역의 자료부족과 유역의 특성이 기존 수문학에서 제시하고 있는 기법으로 강우-유출특성을 정확히 모의하기 어렵기 때문이다. 아울러 중소하천의 홍수예경보를 위해서는 기존의 저류함수법과 같은 강우-유출모형이 아닌 현재 관측되고 있는 하천의 수위 변화를 기반으로 하는 것이 예보의 오차를 줄이는 방법이 될 수 있다. 또한 홍수범람에 따른 피해를 저감하기 위한 대비책의 수립을 위해서 일정시간의 선행시간을 확보하는 것이 중요하다.
이와 같은 목적을 달성하기 위하여 본 연구에서는 강우-유출 모형의 결과를 배제하고 하천에서 현재 발생하고 있는 수위를 바탕으로 짧은 시간주기의 발생가능한 수위를 예측하여 중소하천 홍수예경보에 활용할 수 있는 방법론을 제시하였다. 아울러 홍수예보지점의 현재 관측 수위자료와 상류의 관측수위자료를 활용하여 인공신경망(Artificial Neural Network)을 적용 30분 이내에 발생가능한 수위를 예측할 수 있는 기법을 제안하였다. 제안된 방법론을 낙동강 유역의 남강댐 상류유역에 적용하여 수위예측의 정확성을 검증하였다.
본 논문에서는 상수관로의 개량(교체또는갱생) 우선순위를 결정하는데 있어서 평가되어야 할 인자 또는 요소를 관로의 파손이 전체관망에 미치는 영향 및 개별관로의 특성으로 구분하였고, 이들을 퍼지기법을 적용하여 정량적으로 산정할 수 있는 모형을 개발하였다. 퍼지기법으로 산정되는 관로의 파손이 전체관망에 미치는 영향을 관로의 퍼지 중요도로 정의하였으며, 개별관로의 특성은 관로의 퍼지 특성도로 정의하였다. 퍼지 특성도는 다시 퍼지 노후도 및 퍼지 난이도 등으로
우수관망의 최적 설계에 관한 기존의 연구 모형들은 설계강우에 대하여 관거의 연결, 관경 및 관 경사 등을 최소의 비용을 목적으로 최적화하여 왔다. 그런데 우수관망에서의 관거 내의 흐름은 관경, 관 경사와 특히 관망의 구성 형태에 따라서크게달라진다. 기존의최적우수관망설계모형들은설계유량을만족시키는것에국한되었으며, 설계기준을초과하는 강우에 따른 침수의 발생은 관망의 설계에 어떠한 고려도 되지 않았다. 본 연구에서는 우수관망을 구성함에 있어서 관거 내 흐름을
최근 홍수가 소유역 부근에서 주로 발생하고 있는데 소유역의 홍수 발생 여부를 선재적으로 파악하여 비상시 피해를 최소화할 수 있는 적절한 수위관측망의 설치가 필요하다. 따라서 본 연구에서는 소유역중에 낙동강에 위치한 임하댐 유역을 대상으로 실제 수위관측소와 임시 홍수범람지구를 출구점으로 하는 단위도를 유도하였으며 확률밀도함수를 이용하여 엔트로피 이론을 적용, 정보전달량을 산정하여 각 지점의 특성을 서로 비교할 수 있는 방안을 제시하였다. 적용 결과 홍수범람지구와 기존 수위관측소의 정보전달량으로 홍수범람지구의 유출 특성을 알 수 있었다. 이와 같은 방법론은 소유역의 수위관측망을 구성하기 위하여 유용하게 활용될 수 있을 것으로 기대된다.
최근 기후변화와 이상기후에 대한 관심으로 세계 각국에서는 미래 기후에 대한 보다 정확한 정보를 얻기 위하여 IPCC 권장 시나리오인 SRES (Special Report in Emission Scenario)기반의 GCM(General Circulation Model)과 RCM(Regional Circulation Model)을 이용하고 있으며 특히, 최근에는 고해상도 자료를 생산함으로써 국부지역에 대한 지형학적 특성을 효과적으로 모의할 수 있는 RCM