The purposes of this study were to evaluate the removal characteristics of COD, Ni, and P and to derive appropriate operating conditions for the plating wastewater according to NaOCl reaction time and pH operating conditions in the BPC unit process during the plating wastewater treatment process. As a results of evaluating the removal characteristics for raw wastewater by each BPC unit process, the removal efficiencies of COD, Ni and P in BPC 1-1 unit process were 72.8%, 99.1%, and 100.0%. Therefore, the proper reaction time of NaOCl was derived as 21.1 minutes. In order to maintain the +800 mV ORP and the reaction time of 20 minutes, the temporary injection and continuous injection of NaOCl in the BPC unit process were 13.7 mL and 18.7 mL, respectively. It was found that the temporary injection method of NaOCl reduced the chemical cost by 36.5% compared to the continuous injection method. Also, Ni showed the highest removal efficiency of 97.8% at pH 10.5. On the other hand, P showed a removal efficiency of 57.4% at pH 10.0.
In this research, heavy metals and T-P removal characteristics of plated wastewater are derived using BPC(Break Point Chlorination) process. AA sedimentation pond outflow(Influence) was evaluated for the removal efficiency of heavy metal(Ni) and T-P at a reaction time of 25 minutes by NaOCl input volume(9, 11, 13 and 15 mL). In the case, the higher the NaOCl input volumes, the higher the ORP values were maintained and the higher the removal efficiency tended to be. On the other hand, T-P was judged to have a low relationship between the ORP value and the removal efficiency. In addition, the efficiency of removal heavy metals and T-P in the plated wastewater by injecting 10 mL, 15 mL, 20 mL and 25 mL NaOCl, increased as the amount of NaOCl injected increased, the amount of NaOH input for pH increased. It was found that suspended solid in effluence also increased. It was also observed that the color of the plating wastewater changed from yellowish green to green to charcoal gray to black as the amount of NaOCl injected increased. Treatment characteristics of the reaction time, the longer the reaction time with the substance to be treated after the input of NaOCl, the more the heavy metal removal efficiency tended to increase. Through XRF analysis of the sludge, the constituents in the sludge such as NaCNO, CNCl, Na3PO4, CrO4, 2Na2CrO4 and 2NaNO3 will be analyzed in detail, and the mechanisms of the reaction between the plated wastewater and the complex compound will be elucidated.
Livestock manure treatments have become a more serious problem because massive environmental pollutions such as green and red tides caused by non-point pollution sources from livestock manures have emerged as a serious social issue. In addition, more food wastes are being produced due to population growth and increased income level. Since the London Convention has banned the ocean dumping of wastes, some other waste treatment methods for land disposal had to be developed and applied. At the same time, researches have been conducted to develop alternative energy sources from various types of wastes. As a result, anaerobic digestion as a waste treatment method has become an attractive solution. In this study has three objectives: first, to identify the physical properties of the mixture of livestock wastewater and food waste when combining food waste treatment with the conventional livestock manure treatment based on anaerobic mesophilic digestion; second, to find the ideal ratio of waste mixture that could maximize the collection efficiency of methane (CH4) from the anaerobic digestion process; and third, to promote CH4 production by comparing the biodegradability. As a result of comparing the reactors R1, R2, and R3, each containing a mixture of food waste and livestock manure at the ratio of 5:5, 7:3, and 3:7, respectively, R2 showed the optimum treatment efficiencies for the removal of Total Solids (TS) and Volatile Solids (VS), CH4 production, and biodegradability.
Soluble Cutting Fluids (SCFs) have been used in metal machining processes to improve the quality of metal processing equipment and products. Although SCFs are useful and essential material, wasted soluble cutting fluids are harmful in hydroecological systems because of the high concentration of COD and nitrogen material. If discharged to hydroecological systems without specific treatment, they may cause eutrophication in rivers and lakes. Therefore, the removal efficiency of the COD contained in the SCFs is investigated in this study using electrochemical treatment with an insoluble electrode. The electrode was made of titanium with iridium plating, made from a perforated metal sheet to agitate the sample in the reactor. Cathode and anode electrodes were inserted into acrylic reactor alternately and the reaction time was one hour. The experimental results were as follows: First, for 60 A/m2, 80 A/m2, and 100 A/m2 current densities, the COD removal efficiencies were 42.0%, 63.9%, and 78.4%, respectively.
Soluble cutting fluids (SCFs) have been used in metal machining processes to improve the quality of metal processing equipment and products in modern society. Because the characteristics among metal machining processes differ, various types of cutting fluids are manufactured to enhance the cutting efficiency of different metals. Although SCFs are useful and essential materials, particular treatment is required attributable to the high concentration of nitrogen materials and chemical oxygen demand (COD). In this study, the removal efficiency of total nitrogen (T-N) contained in SCFs was analyzed using electrochemical treatment. The electrode was made of 316 stainless steel, which had been perforated to prevent an imbalanced sample concentration in the reactor. Cathodic and anodic electrodes were alternately inserted into an acrylic reactor. The removal efficiency of T-N in SCFs using 40 A/m2, 60 A/m2, and 80 A/m2 current density, was 48.2%, 61.5% and 69.3%, respectively. The removal efficiency of T-N in SCFs with the addition of 0, 5 mM, and 10 mM NaCl was 69.3%, 74.6%, 77.6%, respectively.
This study was aimed at determining the changes in heavy metal removal efficiency at different acid concentrations in a micro-nanobubble soil washing system and pickling process that is used to dispose of heavy metals. For this purpose, the initial and final heavy metal concentrations were measured to calculate the heavy metal removal efficiency 5, 10, 20, 30, 60, and 120 min into the experiment. Soil contaminated by heavy metals and extracted from 0~15 cm below the surface of a vehicle junkyard in the city of U was used in the experiment. The extracted soil was air-dried for 24 h, after which a No. 10 (2 mm) was used as a filter to remove large particles and other substances from the soil as well as to even out the samples. As for the operating conditions, the air inflow rate in the micro-nano bubble soil washing system was fixed at 2 L/min,; with the concentration of hydrogen peroxide being adjusted to 5%, 10%, or 15%. The treatment lasted 120 min. The results showed that when the concentration of hydrogen peroxide was 5%, the efficiency of Zn removal was 27.4%, whereas those of Ni and Pb were 28.7% and 22.8%, respectively. When the concentration of hydrogen peroxide was 10%, the efficiency of Zn removal was 38.7%, whereas those of Ni and Pb were 42.6% and 28.6%, respectively. When the concentration of hydrogen peroxide was 15%, the efficiency of Zn removal was 49.7%, whereas those of Ni and Pb were 57.1% and 42.6%, respectively. Therefore, the efficiency of removal of all three heavy metals was the highest when the hydrogen peroxide concentration was 15%.
Livestock manure treatments have become a more serious problem because massive environmental pollutions such as green and red tides caused by non-point pollution sources from livestock manures have emerged as a serious social issue. In addition, more food wastes are being produced due to population growth and increased income level. Since the London Convention has banned the ocean dumping of wastes, some other waste treatment methods for land disposal had to be developed and applied. At the same time, researches have been conducted to develop alternative energy sources from various types of wastes. As a result, anaerobic digestion as a waste treatment method has become an attractive solution. In this study has three objectives: first, to identify the physical properties of the mixture of livestock wastewater and food waste when combining food waste treatment with the conventional livestock manure treatment based on anaerobic mesophilic digestion; second, to find the ideal ratio of waste mixture that could maximize the collection efficiency of methane (CH4) from the anaerobic digestion process; and third, to promote CH4 production by comparing the biodegradability. As a result of comparing the reactors R1, R2, and R3, each containing a mixture of food waste and livestock manure at the ratio of 5:5, 7:3, and 3:7, respectively, R2 showed the optimum treatment efficiencies for the removal of Total Solids (TS) and Volatile Solids (VS), CH4 production, and biodegradability.
As industry continues to develop, the contents of various recalcitrant substances that are not removed by conventional wastewater treatment have increased in modern society. The metal working fluids (MWFs) used in the metal working process contain chemical substances, such as mineral oils, anticorrosive agents, extreme-pressure additives, and stabilizers, as well as high concentrations of organics and ammonia-nitrogen. Accordingly, MWFs are required to develop advanced treatments to conserve hydro-ecological resources. This study investigated the removal efficiency of ammonia nitrogen from MWFs according to operating time, applied voltage, and NaCl concentration using a Ti/IrO2 electrode in a batch-type reactor. The experimental results showed that ammonia-nitrogen removal efficiencies without NaCl were 89% and 92% when voltage was adjusted to 15 and 20 V for 60 min and removal efficiency was 90% at 25 V for 40 min. Removal efficiencies of 10 mM NaCl were 4% and 2% greater than those of not adding NaCl at 15 V for 50 min and 20 V for 30 min.
하수슬러지의 열풍건조시 하수슬러지의 특성, 고분자 응집제의 종류 및 주입량 등에 의해 발생되는 점성으로 인해 타공판에 부착성이 상당히 증가하여 건조효율을 낮추는 원인이 되고 있다. 이에 본 연구에서는 고분자 응집제로 인한 하수슬러지(생슬러지, 잉여슬러지, 혼합슬러지)의 부착특성을 평가하기 위하여 고분자 응집제 주입량에 따른 점도 변화를 측정하였으며, 또한 하수슬러지의 열풍건조시 부착성을 상당량 감소시킬 수 있도록 기존 타공판을 대체할 수 있는 다양한 타공판 종류별 부착특성을 평가하였다. 하수슬러지의 열풍건조시 기존 타공판(STS 304재질), 전해연마+티타늄코팅 타공판보다 크롬코팅된 타공판의 부착성이 가장 적게 발생되었으며, 또한 생슬러지 단독건조보다 잉여슬러지 단독건조시 부착성이 더 크게 나타났다.
본 연구는 응집제 자동투입장치를 탈수기 전단에 장착하여 농축슬러지의 플록상태에 따른 고분자 응집제 주입량을 다르게 함으로써 탈수케이크의 함수율 저감 및 응집제 사용량 절감, 탈수여액의 수질개선 등 탈수특성에 미치는 영향을 평가하는데 그 목적이 있다. 응집제 자동투입장치를 B시 S하수처리장의 벨트프레스 전단에 적용한 결과 고속회전 및 응집제 분사를 통한 균일한 플록이 형성됨에 따라 기존 시스템 대비 탈수케이크 함수율 및 응집제 주입율 저감효과를 나타내었다. S하수처리장 농축슬러지(TS; Thickened sludge)에 대한 여름철, 가을철 및 겨울철의 기존 시스템 대비 응집제 자동투입장치의 최적 운전조건은 탈수케이크의 함수율 기준으로 판단해 볼 때 각각 DS-P(14%), DS-P(13%) 및 DS-P(12%)로, 이때의 탈수케이크 저감율은 25.3%, 30.7% 및 13.3%를, 고분자 응집제(P; Polymer) 저감율은 17.6%, 16.7% 및 20.0%를 각각 나타내었다. 응집제 자동투입장치의 회전속도와 유입 농축슬러지량 대비 고분자 응집제 주입율과의 상관관계를 평가한 결과 회전속도를 900~1,200 rpm의 범위 내에서 운전시 플록형성이 양호하게 나타났다.
본 연구는 폐 컴퓨터를 자원회수에 긍정적인 영향을 주고자 폐 컴퓨터(PCB)를 이용한 유가금속회수 공정에서 비중선별에 의한 분리 특성 및 금속함량에 관한 연구를 통해 효과적인 유가금속 회수를 위하는데 그 목적이 있다. 실험재료로 폐 컴퓨터(PCB)를 사용하였으며, PCB리드커터기를 이용해 PCB기판의 부착물 제거 후 고속분쇄기(1차분쇄) 및 미분쇄기(2차분쇄)를 이용하여 일정 크기에 따라 분쇄를 실시하였다. 분쇄물들은 체선별을 통해 입경크기별(n<0.2, 0.2<n<0.5, 0.5<n<1.0, 1.0<n<2.0 및 2.0<n)로 구분하여 중액분리를 실시하였다. 중액분리는 TBE(Tetrabromoethane)를 사용하였다. 5 min, 10 min, 15 min, 20 min 및 30 min의 시간을 주어 시간에 따른 비중선별 정도를 확인하였으며, 중액의 비중변화를 위해 희석액으로 에탄올을 사용해 비중액 비중(1.6, 1.85 및 2.1)을 변화시켜가며 실험을 진행하였다. 전체적인 비중선별 결과 비교시 비중 2.1과 1.85의 결과 값에서 큰 차이가 나타나지 않았으며, 경제적인 면으로 볼 때 비중 1.85가 적합하다고 판단되며, 플라스틱 및 산화물의 함량은 부유물에서 높은 것으로 나타남에 따라 유용금속의 및 기타금속의 함량은 침전물에서 높은 것으로 나타났다.
본 연구는 하수슬러지의 플록상태를 파악할 수 있는 응집제 자동투입장치를 탈수기 전단에 장착하여 하수슬러지(소화슬러지, 농축슬러지) 플록상태에 따른 고분자 응집제 주입량을 다르게 함으로써 탈수케이크의 함수율 저감 및 응집제 사용량 절감, 탈수여액의 수질개선 등을 평가하는데 그 목적이 있다. 응집제 자동투입장치를 B시 N하수처리장 소화슬러지 및 S하수처리장 농축슬러지에 적용한 결과 고속회전 및 응집제 분사를 통한 균일한 플록이 형성됨에 따라 탈수케이크 함수율 및 응집제 주입율 저감효과를 나타내었다. 하수슬러지의 탈수실험 결과 소화슬러지에 대한 고분자 응집제의 적정주입율은 12%로 나타났으며, 이때의 비저항계수(SRF)는 1.11×1011 m/kg으로 나타났다. 또한, 농축슬러지에 대한 고분자 응집제의 적정주입율은 16%로 나타났으며, 이때의 비저항계수(SRF)는 1.68×1011 m/kg으로 나타났다. 또한 응집제 자동투입장치의 회전속도와 유입 하수슬러지량 대비 고분자 응집제 주입율과의 상관관계를 평가한 결과 회전속도를 900~1,200 rpm의 범위 내에서 운전시 플록형성이 양호하게 나타났다. 기존 시스템 대비 응집제 자동투입장치의 경제성 평가 결과 N하수처리장 및 S하수처리장의 경우 각각 연간 263,542,490원 및 42,174,700원으로 산출되었으며, 시설투자비 회수기간은 각각 2.3년 및 7.1년으로 나타났다. 따라서, 하수처리장 탈수기 전단에 응집제 자동투입장치를 적용함으로써 함수율 및 약품주입량 저감 뿐만 아니라 중앙제어실을 통한 실시간 모니터링이 가능하므로 인력감축 유도 및 공정자동화에도 기여할 수 있을 것으로 판단된다.
본 연구에서는 혐기성 소화조에서 발생하는 이산화탄소를 충전탑으로 유입하여 MEA, DEA 및 AMP의 화학적 흡수제의 농도변화에 따른 이산화탄소 제거 효율을 검토하여 혐기성 소화조 내에 적용 가능성을 판단하는데 그 목적이 있다. 본 연구에서 실험에 사용된 충전탑은 유리제 Raschig Ring 6×6 mm를 충전한 직경 50 mm, 충전 높이 1.40 m를 사용하였으며, 액체부하는 20 ℓ/hr, 가스부하는 130 ℓ/hr로 고정하여 CO2의 농도를 10%, 20%, 30%로 주입하였을 때 MEA 10% 및 20%에서와 AMP 10의 CO2 제거율을 관찰하였다. 또한 Packed Tower의 지름은 0.288 m, 충전층의 높이는 1 m이며, 실험시스템은 Air, Air/Water 및 Air-CO2/MEA 흡수제로 하였다. 실험결과에 대한 평가는 계산 프로그램을 통하여 추출하였으며, 분리작용 HTUov, 통과단위수 NTUov, 그리고 정확한 농도계산은 측정을 통하여, 가스 그리고 액체부하를 변화시킴으로써 측정범위를 파악하였다. 실험 결과, MEA의 경우 흡수액 농도, 유입 CO2 농도가 높을수록 빠른 파과시간을 가짐을 알 수 있었고, MEA 10%, DEA 10%, AMP 10% 농도에서의 흡수속도는 MEA, DEA, AMP의 순으로 나타났으며, 흡수부하는 AMP, DEA, MEA의 순으로 나타났다. 그리고 흡수액의 모든 혼합비 및 온도 조건에서 MEA의 첨가량이 높아질수록 CO2의 흡수효율이 감소하는 것으로 나타났다. 이러한 실험결과를 바탕으로 혐기성 소화조에 적용할 CO2 흡수 충전탑 내의 흡수액은 MEA을 적용할 경우 가장 높은 효율을 가지는 것으로 판단되었다.
본 연구는 부산광역시 하수슬러지 처리공정 중 탈수기에 유입되는 배관부에 하수슬러지의 플록상태를 파악할 수 있는 응집제 자동주입장치를 장착하여 하수슬러지 플록상태에 따른 적정 응집제 주입량을 다르게 함으로써 탈수효율 향상 및 응집제 사용량을 감소시키고, 나아가 하수슬러지의 건조효율을 증가시키는데 그 목적이 있다. Pilot-scale 응집제 자동주입장치는 B시 소재 N하수처리장의 원심탈수기 전단에 설치하여 2013년 8월 7일 ~ 16일(10일간)동안 운전하였다. 또한, 응집제 자동투입장치의 설치시 운전상의 문제 발생시에 대비하여 bypass관을 설치하여, 기존 시스템으로 전환이 용이할 수 있도록 설계하였다. 고분자 응집제 주입율은 기존 시스템에서 운영하고 있는 유입슬러지량 대비 고분자 응집제 주입율인 14%를 기준으로 운전을 실시하였으며, 응집제 주입율을 11%에서 9%까지 점차적으로 낮추어 가면서 적정 운전조건을 찾고자 하였다. 응집제 자동투입장치를 원심탈수기 전단에 적용한 결과 고속회전 및 응집제 분사를 통한 균일한 플록이 형성됨에 따라 탈수케이크 함수율 및 응집제 주입율 저감효과를 나타내었다. 기존 시스템 대비 응집제 자동투입장치의 운전조건별(DS-P(11%), DS-P(10%) 및 DS-P(9%)) 탈수케이크의 함수율은 기존 함수율 82.4%에서 각각 80.6(저감량 1.8%), 80.9(저감량 1.5%) 및 81.5%(저감량 0.8%)의 높은 탈수효율을 나타내었다. 또한, 응집제 저감율은 DS-P(11%), DS-P(10%) 및 DS-P(9%)에서 각각 21.4, 28.6 및 35.7%를 나타내었다. 또한, 기존 시스템(DS-P(14%); COD 179.2 mg/L, SS 139.3 mg/L) 대비 응집제 자동투입장치의 운전조건별(DS-P(11%), DS-P(10%) 및 DS-P(9%)) 탈수여액 중 COD 및 SS의 농도는 각각 66.2, 76.4, 81.5 mg/L 및 12.0, 19.3, 55.6 mg/L를 나타내었다. 따라서, 하수처리장 탈수기 전단에 응집제 자동주입장치를 적용함으로써 함수율 및 약품주입량 저감 뿐만 아니라 인력감축 유도 및 중앙제어실을 통한 실시간 모니터링이 가능하므로 공정자동화에도 기여할 수 있을 것으로 판단된다.
The objectives of this study are to examine the processing of oils contamination soil by means of using a micronano-bubble soil washing system, to investigate the various factors such as washing periods, the amount of micro-nano bubbles generated depending on the quantity of acid injection and quantity of air injection, to examine the features involved in the elimination of total petroleum hydrocarbons (TPHs) contained in the soil, and thus to evaluate the possibility of practical application on the field for the economic feasibility.
The oils contaminated soil used in this study was collected from the 0~15 cm surface layer of an automobile junkyard located in U City.
The collected soil was air-dried for 24 hours, and then the large particles and other substances contained in the soil were eliminated and filtered through sieve No.10 (2 mm) to secure consistency in the samples. The TPH concentration of the contaminated soil was found to be 4,914~5,998 mg/kg.
The micronano-bubble soil washing system consists of the reactor, the flow equalization tank, the micronano- bubble generator, the pump and the strainer, and was manufactured with stainless material for withstanding acidic phase.
When the injected air flow rate was fixed at 2 L/min, for each hydrogen peroxide concentrations (5, 10, 15%) the removal percents for TPH within the contaminated soil with retention times of 30 minutes were respectively identified as 4,931 mg/kg (18.9%), 4,678 mg/kg (18.9%) and, 4,513 mg/kg (17.7%). And when the injected air flow rate was fixed at 2 L/min, for each hydrogen peroxide concentrations (5, 10, 15%) the removal percents for TPH within the contaminated soil with retention times of 120 minutes were respectively identified as4,256 mg/kg (22.3%), 4,621 mg/kg (19.7%) and 4,268 mg/kg (25.9%).