검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 86

        28.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 당동만을 중심으로 빈산소가 발생하는 물리적 해양환경 특성을 파악하고, 로지스틱 회귀분석을 이용해 빈 산소 발생확률을 예측하였다. 관측 자료를 분석한 결과, 브런트-바이살라 주파수는 수심이 깊은 만 입구보다 수심이 얕은 만 내측에서 더 크게 나타났다. 이는 당동만 내측에서 담수 유입으로 인해 표층 염분이 낮아져 강한 밀도 성층이 형성되었기 때문이다. 시간적으로 는 6월 ~ 9월까지 리차드슨 수와 브런트 바이살라 주파수가 매우 높게 나타났고, 9월 2일 이후로는 성층이 완화되어 감소하는 경향을 보였다. 당동만에서 관측된 용존산소 및 수온, 염분 자료를 분석한 결과, 저층의 용존산소 농도는 공통적으로 표층과 저층의 수온차에 가장 큰 영향을 받는 것으로 나타났다. 한편, 수심차(dz)를 고정된 변수로 두고, 수온차(dt)의 변화에 의한 빈산소의 발생 확률의 변화 를 계산한 결과, 수심차(dz)가 각각 5 m, 10 m, 15 m, 20 m일 경우, 수온차(dt)는 8℃, 7℃, 5℃, 3℃일 때 빈산소 발생확률이 70 %를 상회 하는 것으로 나타났다. 이는 당동만에서 수심차(dz)가 커질수록 빈산소 발생에 필요한 수온차(dt)는 작아지게 된다는 것을 뜻하며, 특 히 당동만에서 수심차(dz)가 20 m 내외인 지역은 빈산소가 발생하기 매우 쉬운 환경이라는 것을 알 수 있었다.
        4,000원
        32.
        2019.03 구독 인증기관 무료, 개인회원 유료
        4,000원
        37.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Asphalt concrete pavement is damaged by various causes such as traffic and environmental loads. The distressed pavement should be maintained by various methods to provide a comfortable and safe pavement for the driver. This study evaluates the effect of adding a mixing procedure to enhance the mixture quality in the hot in-placement recycled asphalt pavement method, which is an asphalt-pavement maintenance method. METHODS: Various test methods such as Marshall stability and dynamic stability, were employed to estimate the recycled asphalt mixture with and without an additional mixing, using the hot in-placement recycled asphalt pavement method. RESULTS : The mixture samples used in this study were taken before and after the addition of the mixer in the hot in-placement recycled asphalt pavement method (HIR) at field construction sites in GongJu and JinJu in South Korea. The test results of both mixtures satisfied the asphalt-mixture standard specifications. CONCLUSIONS: This study confirmed that adding a mixer in the HIR method results in a well-mixed new asphalt mixture, rejuvenator, and reclaimed asphalt mixture.
        4,000원
        38.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The purpose of this study is to evaluate the mechanical properties of a cold-recycling asphalt mixture used as a base layer and to determine the optimum emulsified-asphalt content for ensuring the mixture’s performance. METHODS: The physical properties (storage stability, mixability, and workability) of three types of asphalt emulsion (CMS-1h, CSS-1h, and CSS-1hp) were evaluated using the rotational viscosity test. Asphalt emulsion residues, prepared according to the ASTM D 7497-09 standard, were evaluated for their rheological properties, including the G*/sinδand the dynamic shear modulus (|G*|). In addition, the Marshall stability, indirect tensile strength, and tensile-strength ratio (TSR) were evaluated for the cold-recycling asphalt mixtures fabricated according to the type and contents of the emulsified asphalt. RESULTS: The CSS-1hp was found to be superior to the other two types in terms of storage stability, mixability, and workability, and its G*/sinδ value at high temperatures was higher than that of the other two types. From the dynamic shear modulus test, the CSS-1hp was also found to be superior to the other two types, with respect to low-temperature cracking and rutting resistance. The mixture test indicated that the indirect tensile strength and TSR increased with the increasing emulsified-asphalt content. However, the mixtures with one-percent emulsified-asphalt content did not meet the national specification in terms of the aggregate coverage (over 50%) and the indirect tensile strength (more than 0.4 MPa). CONCLUSIONS : The emulsified-asphalt performance varied greatly, depending on the type of base material and modifying additives; therefore, it is considered that this will have a great effect on the performance of the cold-recycling asphalt pavement. As the emulsified-asphalt content increased, the strength change was significant. Therefore, it is desirable to apply the strength properties as a factor for determining the optimum emulsified-asphalt content in the mix design. The 1% emulsified-asphalt content did not satisfy the strength and aggregate coverage criteria suggested by national standards. Therefore, the minimum emulsified-asphalt content should be specified to secure the performance.
        4,300원
        39.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The main distress of asphalt pavements in monsoon climate regions are caused by water damage and plastic deformation due to repeated rain season and increased heavy vehicle traffic volume. In this study, the mechanical properties of polymer-modified warm mix asphalt (PWMA) materials are evaluated to use in monsoon climate regions such as Indonesia. METHODS: Comprehensive laboratory tests are conducted to evaluate moisture resistance and permanent deformation resistance for three different asphalt mixtures such as the Indonesian conventional hot-mix asphalt (HMA) mixture, the polymer-modified asphalt mixture, and the polymer-modified warm mix asphalt (PWMA) mixture. Dynamic immersion test and indirect tensile strength ratio test are performed to evaluate moisture resistance. The wheel tracking test is performed to evaluate rutting resistance. Additionally, the Hamburg wheel tracking test is performed to evaluate rutting and moisture resistances simultaneously. RESULTS: The dynamic immersion test results indicate that the PWMA mixture shows the highest resistance to moisture. The indirect tensile strength ratio test indicates that TSR values of PWMA mixture, Indonesian PMA mixture, and Indonesian HMA mixture show 87.2%, 84.1%, and 67.9%, respectively. The wheel tracking test results indicate that the PWMA mixture is found to be more resistant to plastic deformation than the Indonesian PMA. The dynamic stability values are 2,739 times/mm and 3,150 times/mm, respectively. Moreover, the Hamburg wheel tracking test results indicate that PWMA mixture is more resistant to plastic deformation than Indonesian PMA and HMA mixtures. CONCLUSIONS: Based on limited laboratory test results, it is concluded that rutting resistance and moisture susceptibility of the PWMA mixture is superior to Indonesian HMA and Indonesian PMA mixtures. It is postulated that PWMA mixture would be suitable for climate and traffic conditions in Indonesia.
        4,200원
        40.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to analyze the performance life of hot central plant recycling (HCPR) and hot in-place recycling (HIR) pavements applied to the National Highway for the past 20 years and compare it with conventional hot-mix asphalt (HMA) pavement. METHODS: In order to analyze the performance life of recycling asphalt pavements, a comprehensive literature review was conducted to investigate the government law and official system for the use of recycling asphalt pavement in Korea and foreign countries. Next, the application information of using a hot central plant recycling and hot in-place recycling pavements in the national highway is collected from the database of pavement management system (PMS) and then their field condition is visually surveyed. Finally, the performance life of recycling asphalt pavements in the national highway is analyzed and compared with conventional hot-mix asphalt pavement. RESULTS: Institutions are encouraging the promotion of using recycled asphalt pavement through various legal systems in Korea as well as abroad. Based on analysis results for the average performance life of hot central plant recycling pavement applied to the national highway, the average performance life is estimated to be 10.2 years. However, the average performance life of in-place recycling pavement is estimated to be 6.5 years. However, it is expected to increase performance life after the HIR construction system is modified. CONCLUSIONS : Based on the limited data analysis of the performance life of recycled asphalt pavements, HCPR shows similar performance life to conventional asphalt pavement but HIR shows shorter performance life than conventional asphalt pavement. However, it is noted that all performance life data is very limited and it should be monitored and analyzed further.
        4,500원
        1 2 3 4 5