The damage to non-structural elements in buildings has been increasing due to earthquakes. In Korea, post-installed anchors produced overseas have been mainly used for seismic anchorage of non-structural components to structures. Recently, a new cast-in-place concrete insert anchor installed in concrete without drilling has been developed in Korea. In this paper, an experimental study was conducted to evaluate the tensile and shear strengths of the newly developed anchor under monotonic load. The failure modes of the tension specimens were divided into concrete breakout failure and steel failure, and all shear specimens showed steel failure. In both tension and shear, the maximum loads of specimens were greater than the nominal strengths predicted by the concrete design code (KDS 14 20 54). As a result, it is expected that the current code can also be used to calculate the strength of the developed cast-in anchor.
Zinc oxide (ZnO) based transparent conducting oxides (TCO) thin films, are used in many applications such as solar cells, flat panel displays, and LEDs due to their wide bandgap nature and excellent electrical properties. In the present work, fluorine and aluminium-doped ZnO targets are prepared and thin films are deposited on soda-lime glass substrate using a RF magnetron sputtering unit. The aluminium concentration is fixed at 2 wt%, and the fluorine concentration is adjusted between 0 to 2.0 wt% with five different concentrations, namely, Al2ZnO98(AZO), F0.5AZO97.5(FAZO1), F1AZO97(FAZO2), F1.5AZO96.5(FAZO3), and F2AZO96(FAZO4). Thin films are deposited with an RF power of 40 W and working pressure of 5 m Torr at 270 oC. The morphological analysis performed for the thin film reveals that surface roughness decreases in FAZO1 and FAZO2 samples when doped with a small amount of fluorine. Further, optical and electrical properties measured for FAZO1 sample show average optical transmissions of over 89 % in the visible region and 82.5 % in the infrared region, followed by low resistivity and sheet resistance of 3.59 × 10−4 Ωcm and 5.52 Ω/sq, respectively. In future, these thin films with excellent optoelectronic properties can be used for thin-film solar cell and other optoelectronics applications.
PURPOSES : This study reveals the social cost of illegal parking. Roadside illegal parking causes additional traffic congestion, air pollution, and traffic accidents. Several cities try to reduce illegal parking for the same reasons and build public parking spaces. However, few studies have been conducted on the effects and social cost of illegal parking problems.
METHODS : In this study, a real-world study site was selected for the calibration of the VISSIM micro-simulator parameters, and several scenarios were created for developing illegal parking effect models. According to the simulation results, this study demonstrated five regression models that illustrated the average travel speed drop effects and the differences in emissions. RESULTS : Depending on the scenarios, the travel speed was dropped by 20 km/h–57 km/h and the levels of carbon dioxide and nitrogen oxide were increased by 111 g–279 g and 22.5 g–56.3 g, respectively.
CONCLUSIONS : In this study, a methodology for estimating the social cost of illegal parking was established. Therefore, it is expected to contribute to the evaluation of policies related to illegal parking or the feasibility of facility investment.
PURPOSES : In this study, the social cost of on-street parking spaces was estimated by dividing it into private and external costs.
METHODS : We established a methodology and conducted a case analysis of Seoul. Private costs were estimated from the guidelines and historical data collected. The opportunity cost of the land was estimated using spatial information. External costs built a macroscopic model (using TransCAD) and estimated travel time, operation, accident, and environmental costs.
RESULTS : The social cost per space was estimated at 77 million won. Private costs were analyzed as 133.3 billion won, the opportunity cost of the land was 68,555 billion won, and external costs were 118,25 billion won in 2020.
CONCLUSIONS : In this study, a methodology for estimating the social cost of a road parking facility was established and applied to the case of Seoul. Therefore, it is expected to contribute to the objective reviewing of the feasibility of policy evaluation or facility investment related to parking facilities.
Recent advances in technology using ultra-thin noble metal film in oxide/metal/oxide structures have attracted attention because this material is a promising alternative to meet the needs of transparent conduction electrodes (TCE). AZO/ Ag/AZO multilayer films are prepared by magnetron sputtering for Cu2ZnSn(S,Se)4 (CZTSSe) of kesterite solar cells. It is shown that the electrical and optical properties of the AZO/Ag/AZO multilayer films can be improved by the very low resistivity and surface plasmon effects due to the deposition of different thicknesses of Ag layer between oxide layers fixed at AZO 30 nm. The AZO/Ag/AZO multilayer films of Ag 15 nm show high mobility of 26.4 cm2/Vs and low resistivity and sheet resistance of 3.58*10−5 Ωcm and 5.0 Ω/sq. Also, the AZO/Ag (15 nm)/AZO multilayer film shows relatively high transmittance of more than 65% in the visible region. Through this, we fabricated CZTSSe thin film solar cells with 7.51% efficiency by improving the short-circuit current density and fill factor to 27.7 mV/cm2 and 62 %, respectively.
Perineural invasion (PNI) is the underestimated metastatic pathway and has been widely recognized as a negative prognostic factor in many human cancers. L1CAM is one of members of the immunoglobulin-like cell adhesion molecule (CAM) family, which play a role in neural development. Moreover, a new role of L1CAM outside the nervous system has been revealed. Overexpression of L1CAM was involved in the tumor progression and LN metastasis in various malignancies. In the present study, presence of PNI and L1CAM expression were examined to define their prognostic values in OSCC. In addition, association of L1CAM expression with presence of PNI was assessed to define the value as a candidate molecule supporting the diagnosis of PNI. We found that presence of PNI significantly correlated with LN metastasis and advanced clinical stage. L1CAM expression also significantly correlated with differentiation, lymph node metastasis, advanced clinical stage, as well as presence of PNI. Our results suggest that L1CAM seems to play a role in tumor progression, possibly through the PNI-related mechanism and could be a molecular marker for supporting the presence of PNI and predicting clinical outcome in OSCC.
Indoor air environments for people are recently being observed because the time we spend inside the house or a building throughout the day has been extended during the present circumstances. This is why formaldehyde and volatile organic compounds (VOCs) are regulated, which can cause Sick Building Syndrome (SBS). There might be other VOCs not regulated by law in newly built collective housing, however, in order to compensate for the reduced concentration of regulated VOCs such as benzene, toluene, ethylbenzene, xylene, and styrene. In this study, the concentration of unregulated VOCs in newly built collective housing structures located in the Seoul Special City was researched to find potential indoor hazards for citizens and to prepare basic data for further research.
Cu2ZnSn(S,Se)4(CZTSSe) thin film solar cells areone of the most promising candidates for photovoltaic devices due to their earth-abundant composition, high absorption coefficient and appropriate band gap. The sputtering process is the main challenge to achieving high efficiency of CZTSSe solar cells for industrialization. In this study, we fabricated CZTSSe absorbers on Mo coated soda lime glass using different pressures during the annealing process. As an environmental strategy, the annealing process is performed with S and Se powder, without any toxic H2Se and/or H2S gases. Because CZTSSe thin films have a very narrow stable phase region, it is important to control the condition of the annealing process to achieve high efficiency of the solar cell. To identify the effect of process pressure during the sulfo-selenization, we experiment with varying initial pressure from 600 Torr to 800 Torr. We fabricate a CZTSSe thin film solar cell with 8.24 % efficiency, with 435 mV for open circuit voltage(VOC) and 36.98 mA/cm2 for short circuit current density(JSC), under a highest process pressure of 800 Torr.
It is well known that lymph node metastasis is a major prognostic factor in patients with oral squamous cell carcinoma (OSCC). 30-40% of patients with OSCC have already undergone regional metastasis at diagnosis. The survival rate of patients with metastasis is reduced by more than 50%. Therefore, prevention and early detection of metastasis are very important to increase the survival rate of patients. Many investigators have studied the molecular mechanism of metastasis and tried to develop the molecules to inhibit any step of metastatic cascade. Among those molecules, an interest in the metastasis suppressor gene has been increasing. Expression of metastasis suppressor KiSS-1 has shown to be significantly related to poor clinical outcome and worse survival rate of patient in various malignancies of different organs. In addition, our previous study in OSCC also revealed that downregulation of KiSS-1 expression correlated with the presence of cervical lymph node metastasis, one part of tumor progression. Therefore, further investigation was needed to identify the molecular function of KiSS-1 using OSCC cell line and to evaluate the possibility of KiSS-1 as a new therapeutic target.
본 실험에서는 조류 제거 및 농축을 위해 Silicon Carbide(SiC) 재질의 침지형 세라믹막을 적용하여 운전 특성을 평가하고자 하였다. SiC 세라믹막은 막표면이 음전하를 띄어 음전하를 띄는 조류 제거에 적용이 가능하고 고유량으로 역세척(Backwashing)을 할 수 있어 고농도의 조류 농축시에도 적용이 가능하다. 역세척 유량과 역세척 시간, 역세척수 수온, 역세척수에 차아염소산나트륨 주입 유무, 여과/역세시 air scrubbing 유량에 따라 역세척 효율을 평가하였으며 Jar test를 통해 선정한 농도로 응집제 주입 유무에 따라 운전 특성을 비교하였다. 또한 동일한 조건에서 세라믹막과 유기막의 운전 특성과 비교하였다.
본 연구는 환경부의 “환경정책기반공공기술개발사업”으로 지원받은 과제입니다.
본 실험에서는 대청호에서 발생한 남조류를 대상으로 SiC(Silicon carbide) 평막의 최적 운전조건을 도출하고자 하였다. 이를 위해 원수 농도에 따른 투과플럭스, 응집제 주입 조건, Air scrubbing 조건, 역세척(Backwashing) 유량 및 시간, 여과 및 역세척 시간, 응집제 종류 및 주입 농도 등에 대해 안정적으로 운전이 가능한 최적 조건을 도출하였다. 특히, 저농도의 응집제 주입에도 음전하를 띄는 조류 입자들과 전기적으로 중화를 일으켜서 생성된 미세 플럭들이 SiC 평막의 막표면에서 투수성을 증가시킨 것으로 사료된다. 이를 통해 도출된 설계인자로 제작한 Pilot Plant를 조류 제거시 적용하고자 한다.
본 연구는 환경부의 “환경정책기반공공기술개발사업”으로 지원받은 과제입니다.
본 실험에서는 실제 원수와 모사 원수를 이용하여 유기막(PES, PVDF 및 PTFE)을 이용하여 재질에 따른 막오염 특성을 분석하고자 하였다. 먼저 원수를 운전압력 1kgf/cm2로 여과하였다. 재질별 소요된 여과 시간은 약 5분, 약 13분, 약 17분으로 각각 나타났다. 또한 모사 원수 실험을 진행하였고, 원수 실험과 동일한 결과를 나타냈다. Jucker 와 Clark(1994)에 따르면 소수성 재질의 막이 유기물 흡착에 의한 Flux 감소가 크다고 보고하였고, 본 실험에서도 소수성 재질의 막이 높은 Flux 감소율을 나타났다. 실험 결과를 통해 막 재질 특성이 조류 유입에 따른 Flux 감소율에 영향을 미치는 것을 확인하였다.
본 연구는 환경부의 “환경정책기반공공기술개발사업”으로 지원받은 과제입니다.