검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 86

        21.
        2019.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this paper is to explore the fishing grounds of trawl fishery, which are operating in the waters around Jeju Island, and to investigate the monthly shifting changes of the explored fishing grounds. Information on AIS of fishing vessels operating near Jeju Island was collected and analyzed from October 16, 2016 to October 16, 2017. Thus, the location of fishing vessels with the same operational characteristics as those in this industry was extracted and displayed on Google Maps' location drawings to analyze the dense distribution of fishing vessels according to the frequency of their appearance. In the distribution of fishing vessels that appeared in October, a wide range of fishing grounds connecting the upper and lower waters of the 221 and 222 sea of fishing area was found to have gradually expanded and increased density, showing the widest range and highest density in December, and then gradually decreasing from January 2017 to near extinction in May. The distribution of fishing vessels that appeared in the left and lower waters of the 243 sea estuary increased not only in November and December, but also in the appearing sea areas gradually moved to the 242 sea and the range of their appearance was extended to the 241 sea. In other words, the highly dense fishing area in December indirectly shows that it is winter fishing grounds for these industries. The distribution of these dense fishing vessels gradually moved north and west with each passing day, reducing their density and reaching a near extinction in August. However, in September, the density was gradually restored again. Fishing vessels that appeared in high density in the northern waters of the 224 sea east of the Yeoseo island in December were thought to be fishing vessels, whose density decreased over time, almost disappeared in May, and reappeared in July and August, showing a certain degree of density, and then decreased again.
        4,000원
        26.
        2017.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have studied the efficient operation of the radar and the appropriateness of the installation location, when constructing the VTS system. As the Civil-Military Complex Harbour (Kangjeong Port) is completed in 2016, we set the control area within 10 nautical miles centering on Kangjeong Port, and found out and removed the operational radar blind area of VTS system to provide safe navigation information for vessels that navigating this area. Assuming that two international cruise ships entering at the same time, we performed the radar simulation and compared the images by considering the three sites of Kangjeong Port, Miaksan and Seoguipo Port. Simulation results for a single radar installed at Kangjung Port indicate that the blind area was largely affected by two large cruise ships and the surrounding islands. The blind area due to Kogunsan was considerably large when installed in Miaksan, but the blind area due to the influences of Beomseom, Moonseom and Seopseom was negligibly large. It seems that additional radar installation is necessary as a complementary solution to solve this blind area. When two radars were installed at Miaksan and Kangjeong Port, the residual blind area due to the Seopseom was 0.25 km2 at 0.1~0.33 nautical miles in the southeast direction from Seopseom. In addition, the remaining blind area with two cruise ships mutually influenced was 0.18 km2, which did not occur with a single cruise ship.
        4,000원
        27.
        2017.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is intended to provide navigator with specific information necessary to assist in the avoidance of collision and in operation of ships to evaluate the maneuverability of research vessel Jera. Authors carried out full-scale sea trials for turning test, zig-zag test, and spiral test at actual sea-going condition, which were performed on starboard and port sides with 10-20 rudder angle at service speed of 10 knots. The turning circle was much different at both of the turning of port and starboard which was longer at the starboard than at the port. In the zig-zag test results, the port and starboard was 10˚ the first and second overshoot angles were 6.0˚ , 5.8˚ and 6.3˚ , 7.1˚ respectively and the first overshoot angles were 16.4˚ , 17.6˚ when using 20˚ . Her maneuverability index T and K can be easily determined by using an analogue computer with the data obtained from the zig-zag tests where K is a constant representing the turning ability and T is a constant representing her quick response. In the zig-zag tests under 10˚ or 20˚ at rudder angle, the value K is 0.149. 0.123 sec- and T is 11.853 and 6.193 sec and angular velocity is 0.937˚ /sec and 1.636˚ /sec. In the spiral test, the loop width was unstable at +0.51˚ and -1.19˚ around the midship of rudder, but the tangent line at 0˚ was close to vertical. From the sea trial results, we found that she did comply with the present criterion in the standards of maneuverability of IMO.
        4,000원
        30.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the results of evaluating the passenger comfort due to the standard deviation of acceleration in vertical and lateral direction regarding the ship response in irregular wave by ordinary strip method in regular wave and energy spectrum using linear superposition theory in order to evaluate the motion of experimental ship are as follows. According to the results of ship response, it was possible to find that, in order to reduce the motion of ship, a ship operating in bow sea was more stable than in quartering sea. In the results of analyzing the standard deviation of acceleration in vertical direction according to each component wave pattern, when there was a wave length of 56m and an average wave period of 6 sec, most of cases showed the peak value. And among them, the standard deviation was 0.35 which was the highest in head sea. And in case of lateral direction, the maximum value was shown in a wave length of 100m and an average wave period of 8 sec. And it was 0.16 in beam sea and χ = 150°. In the evaluation of passenger comfort due to standard acceleration in vertical and lateral direction, it was 80% in head and bow sea. On the other hand, it was shown to be 15% in follow sea. Accordingly, when the expected wave height in a sea area where a training ship was intended to operate was known, it was possible to predict the routing of ship. And altering her course could reduce the passenger comfort by approximately 50%.
        4,000원
        37.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to deduce an objective evaluation method of motion seasickness incidence (MSI) by ship motions during underway in irregular waves and to present the fundamental data of passenger comfort on the yacht and the passenger ship according to the result, the MSI of the trainees by the questionnaires was analysed and compared with the rate of variation of salivary a -amylase activity (VSAA) on the training ship "A-ra ho" of Jeju national university. Relationship between rate of variation (x) by salivary a -amylase activity and motion seasickness incidence (y) was described by the equation, MSI(%) = 0.6073 x + 12.189 including the correlation coefficient (R 2 = 0.9853). The result obtained through the rate of variation of salivary a -amylase activity which was the quantitative evaluation method for ship motions causing seasickness was most affected by z-vertical acceleration and occurred within the frequency range 0.1 to 0.3Hz centered on 0.2Hz, and the simulation result based on this finding showed the motion seasickness rate at approximately 4% lower than the rate obtained through the survey.
        4,000원
        38.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to propose basic references for the policy making of fishing vessel fishery by Jeju Special Self-Governing Province, we have obtained the basic productivity through analyzing operating days and catches of 16 sample fishing vessels registered in Aewol port, the north of Jeju island in the year of 2011. In addition, to compare with the basic productivity of southern sea area in the Jeju island, that of 7 sample fishing vessels registered in Kangjung port was used. Around Aewol port, average operating days during the main catch period from July to October were over 15 days a month. A average daily catch of fishing vessels was minimum 21.0 kg in May and reached to maximum 54.5 kg in December, showing U-shaped catch pattern through the year. The trend formula of the average daily productivity (y) depending on a tonnage (x) of fishing vessels around Aewol port was described by the equation, y = 18.867 ln(x) + 11.001, and that around Kangjung port in the year of 2009 was understood to be y = 23.271 ln(x) + 25.715. As a result, it seemed that the productivity of fishing vessels around Kangjung port, operating in the southern sea area of Jeju Island, was much greater than that of fishing vessels around Aewol port in the northern sea area of Jeju Island. Especially, that of fishing vessels less than 10 tons was 35-40% more.
        4,000원
        1 2 3 4 5