검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 73

        21.
        2013.04 구독 인증기관·개인회원 무료
        Sweetpotato whitefly (Bemisia tabaci), especially Q biotype, has been recognized one of the most destructive insect pests worldwide because of increased resistance to some insecticide groups requiring alternative strategies for its control. We studied the conidia production of entomopathogenic fungus Isaria javanica Pf04, which had been reported high virulence isolate against Q biotype of B. tabaci, using grain. Brown rice was most suitable for conidia mass production of the isolate of I. javanica. Conidia was produced high at 25 ~ 27.5℃. The isolate produced more spores when conidia suspension directly inoculated onto media than two-phase fermentation. When concentration of inoculum was high spore production was high, but increasing rate of conidia production was highest at low inoculum concentration (1×105 conidia/ml) as 6,700 times increase compared with 20 times increase at high inoculum concentration (1×108 conidia/ml). These results indicated that the isolate can produce more conidia with cheap agricultural product and can develop as a microbial pesticide to control sweetpotato whitefly.
        23.
        2012.12 구독 인증기관 무료, 개인회원 유료
        As the demand for large-scale analysis of gene expres- sion using DNA arrays increases, the importance of the surface characterization of DNA arrays has emerged. We com- pared the efficiency of molecular biological applications on solid-phases with different surface polarities to identify the most optimal conditions. We employed thiol-gold reactions for DNA immobilization on solid surfaces. The surface polarity was controlled by creating a self-assembled monolayer (SAM) of mercaptohexanol or hepthanethiol, which create hydrop- hilic or hydrophobic surface properties, respectively. A hyd- rophilic environment was found to be much more favorable to solid-phase molecular biological manipulations. A SAM of mercaptoethanol had the highest affinity to DNA mole- cules in our experimetns and it showed greater efficiency in terms of DNA hybridization and polymerization. The opti- mal DNA concentration for immobilization was found to be 0.5 mM. The optimal reaction time for both thiolated DNA and matrix molecules was 10 min and for the polymerase reaction time was 150 min. Under these optimized condi- tions, molecular biology techniques including DNA hybri- dization, ligation, polymerization, PCR and multiplex PCR were shown to be feasible in solid-state conditions. We de-monstrated from our present analysis the importance of surface polarity in solid-phase molecular biological appli- cations. A hydrophilic SAM generated a far more favorable envi- ronment than hydrophobic SAM for solid‐state molecular techniques. Our findings suggest that the conditions and met- hods identified here could be used for DNA‐DNA hybri- dization applications such as DNA chips and for the further development of solid-phase genetic engineering applicatio- ns that involve DNA-enzyme interactions.
        4,000원
        24.
        2010.12 KCI 등재 구독 인증기관·개인회원 무료
        Pleurotus eryngii (also known as king trumpet mushroom, french horn mushroom, king oyster mushroom) is an edible mushroom native to Mediterranean regions of Europe, the Middle East, and North Africa, but also grown in parts of Asia. It has the ability to produce various biologically active compounds and possesses a well-developed ligninolytic enzyme system that participates in the degradation of lignin and different aromatic compounds. In this study, we investigated the protective effects of the ethyl acetate extract of Pleurotus eryngii (PEE) on the development of atopic dermatitis (AD) in human keratinocyte HaCaT cells. Keratinocytes, one of major cell types in the skin, can be induced by TNF-α and IFN-γ to express thymus and activation-regulated chemokine (TARC/CCL17), which is considered to be a pivotal mediator in the inflammatory responses during the development of inflammatory skin diseases, such as AD. In addition, normal T-cell–expressed and secreted chemokine (RANTES) is a (C-C) chemokine released by T lymphocytes, other inflammatory cells, and platelets and plays an important role in allergic inflammatory processes. Pretreatment of HaCaT cells with PEE suppressed TNF-α/IFN-γ-induced protein and mRNA expression of CCL17 and RANTES. PEE significantly inhibited TNF-α/IFN-γ-induced NF-κB activation. These results suggest that PEE may exert anti-inflammatory responses by suppressing TNF-α and IFN-γ-induced activation of NF-κB in the keratinocytes and might be a useful tool in therapy of skin inflammatory diseases.
        27.
        2008.06 구독 인증기관 무료, 개인회원 유료
        The neurotrophin plays an important role in the development, differentiation and survival of the nervous system in vertebrates. It exerts its cellular effects through two different receptors, the Trk receptor tyrosine kinase neurotrophin receptor and the p75 neurotrophin receptor, a member of the tumor necrosis factor receptor superfamily. Trk and p75 neurotrophin receptors utilize specific target proteins to transmit signals into the cell. An ankyrin-rich membrane spanning protein (ARMS) was identified as a new p75 interacting protein and serves as a novel downstream target of p75 neurotrophin receptor. We sought to delineate the interaction between p75 and ARMS by deletion constructs of p75 and green fluorescent protein (GFP)-tagged ARMS. We examined the interaction between these two proteins after overexpressing them in HEK-293 cells. Using both Western blot analysis and immunocytochemistry followed by confocal laser scanning microscopy, we found out that the intracellular domain of the p75 neurotrophin receptor was important for the interaction with ARMS. The results from this study suggest that ARMS may play an important role for mediating the signals from p75 neurotrophin receptor into the cell.
        4,000원
        28.
        2007.12 구독 인증기관 무료, 개인회원 유료
        Anti-proliferation of methanol extract of Curcuma rhizome on oral squamous cell carcinoma (KB) and osteosarcoma (HOS) cells were investigated. In order to elucidate the involvement of telomerase inhibitory activity as a part of anti-proliferative effect of Curcuma rhizome on cancer cells, we measured telomerase activity in Curcuma rhizome extract-treated cancer cells. The concentration inhibited cell proliferation to 50% (IC50)of the methanol extract of Curcuma rhizome against oral squamous cell carcinoma (KB) cells and osteosarcoma (HOS) cells were 21.30 μg/mℓ and 39.3μg/mℓ respectively. The methanol extract of Curcuma rhizome showed inhibitory telomerase inhibitory effect which is required for cancer cell immortality. Therefore, it seems that the anticancer effect of methanol extract of Curcuma rhizome is at least partially due to telomerase inhibitory effect. Five fraction samples were prepared according to its polarity differences and analyzed anti-proliferative effects of each fraction samples on oral squamous cell carcinoma and osteosarcoma cells. Anticancer effect was observed in dichloromethane, and ethylacetate fractions. The highest anticancer effect was found in dichloromethane fraction which had IC50value of 23.3 μg/mℓ and 10.5μg/mℓ against oral squamous cell carcinoma (KB) cells and osteosarcoma (HOS) cells, respectively.
        4,000원
        30.
        2018.04 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Fermented halla gold kiwifruit (FHK) was prepared with Lactobacillus plantarum CK10, a bacterium derived from kimchi. We investigated the quality characteristics and antioxidative activity of madeleine added with FHK. The madeleine dough was prepared by mixing flour, sugar, baking powder, and then followed by adding salt, rum, different amount of the FHK (0, 1, and 3%) and butter. The total titratable acidity of madeleine increased significantly with the amounts of added FHK (p<0.05), while the pH value and total soluble solids showed the reverse trend. The color of madeleine became substantially redder with increasing amounts of FHK (p<0.05), and it appeared darker and less yellow at the same time. The total polyphenol contents of madeleines increased significantly with increasing amounts of FHK (p<0.05), but there was little difference in the total flavonoid content. When the antioxidant activities were measured in terms of 2,2-diphenyl-1-picrylhydrazyl (DPPH)- and 2,2’-azino-bis-3-ethylbenzothiazoline- 6-sulfonic acid-diammonium salt (ABTS)- radical scavenging, both measured activities of madeleines increased dramatically with added FHK in a dose-dependent manner. Our results suggested that the acidity, color, polyphenol content, and antioxidant activities of madeleines can be improved by adding the fermented gold kiwifruit.
        31.
        2017.09 KCI 등재 서비스 종료(열람 제한)
        Platycodon grandiflorum (Bell flower) is an important plant that has traditionally been used as herbal medicine for the treatment of cough, phlegm, sore throats, lung abscesses, chest pains, dysuria, and dysentery. The present study was initiated to investigate the feasibility of inducing shoot and root organogenesis in cultured explants of P. grandiflorum in a range of culture media and through use of various plant growth regulators (PGRs). The plantlets (Stem containing one node) were isolated and cultured on different concentrations of Murashige and Skoog (MS) medium supplemented with PGRs. We found that proliferation and elongation of shoots and roots could be achieved on ¼ MS for P. grandiflorum with wild and green petals and on ⅛ MS for P. grandiflorum with double petals. The highest levels of development and elongation of adventitious shoots and roots were observed when petal explants were cultured on ¼ MS (pH 3.8) supplemented with 5% sucrose. Increasing the agar concentration reduced shoot growth and rooting potential; nevertheless, the highest number of shoots and roots was observed on 0.6% agar. In the case of growth regulators, ¼ MS supplemented with 1 mg L-1 6-benzylaminopurine (BA) was found to be best for shooting, although higher concentrations of BA tended to reduce shoot and root elongation. The highest number of shoots was achieved on 0.5 mg ․ L-1 thidiazuron (TDZ) from double petal explants grown on ⅛ MS. However, root and shoot elongation were found to decrease when TDZ concentrations were increased. Low concentrations of kinetin, naphthalene acetic acid, indole acetic acid, and 3-indole butyric acid induced shoot and root proliferation and elongation. Taken together, our study showed that low concentrations of PGRs induced the greatest root formation and elongation, showing that the optimal concentration of PGRs for shoot proliferation was species-dependent.
        32.
        2017.06 KCI 등재 서비스 종료(열람 제한)
        4-Nonylphenol (NP) is a surfactant that is a well-known and widespread estrogenic endocrine disrupting chemical (EDC). Although it has been known that the affinity of NP to ERs is low, it has been suggested that low-dose NP has toxicity. In the present study, the endocrine disrupting effects on reproduction, and the weight of gonads, epididymis, and uterus were evaluated with the chronic lower-dose NP exposing. This study was designed by following the OECD test guideline 443 and subjected to a complete necropsy. In male, NP had an effect on the weight of the testis and epididymis in both F0 and F1. In females, NP decreased the weight of ovary and uterus in F0 but not in pre-pubertal F1 pubs. Fertility of male and female in F0 or F1 was no related with NP administration. The number of caudal-epididymal sperm by body weight (BW) was not different between groups in both F0 and F1. Besides, the difference of the sperm number between generations was not detected. The number of ovulated oocytes was similar between groups in F0, but significantly decreased in NP 50 group of F1. The litter size and sex ratios of offspring in F1 and F2 were not different. The accumulated mating rate and gestation period were not affected by the NP administration. Those results shows that chronic lower-dose NP administration has an effect of endocrine disruptor on the weight of gonads and epididymis of F0 and F1 but not in reproduction. Based on the results, it is suggested that chronic lower-dose NP exposing causes endocrine disruption in the weight of gonad and epididymis but not in the reproductive ability of next generations.
        33.
        2017.05 서비스 종료(열람 제한)
        Background : Although ginseng has various bioactive compounds in it, there is lack of study on the variations of bioactive compounds in ginseng according to the cultivation soil and the applied fertilizer types (or amount). Therefore, this study aims to examine the variations of 37 fatty acids (FA) and 8 vitamin E (Vit-E) vitamers in 6-year-old ginseng root cultivated in different soil types with different fertilizers regimes. Methods and Results : The profiling of 37 FAs and 8 Vit-E vitamers in 6-year-old ginseng roots was measured by gas chromatography coupled with a flame ionization detector, and then these results were statistically analyzed with chemometrics. The FA and Vit-E content in ginseng roots varied significantly with respect to soil cultivation conditions due to organic fertilizer types and amounts used. Unsaturated FA in ginseng is approximately 2.7 fold higher than the saturated FA. Linoleic, palmitic, and oleic acids were the most abundant FAs found in the ginseng roots. Also, the major Vit-E vitamer found in ginseng root is α-tocopherol. In particular, the application of rice straw compost or food waste fertilizer was increased to create nutritionally desirable FAs and bioactive Vit-E in ginseng root. In addition, phytonutrient profiling coupled with chemometrics can be used to discriminate the cultivation conditions of ginseng. Conclusion : This study extends our understanding about the variations of FA and Vit-E in ginseng root depending on cultivation conditions. Hence, these results can be useful as basic information for reliable ginseng production containing high amounts of phytonutrients in a paddy-converted field.
        34.
        2017.05 서비스 종료(열람 제한)
        Background : The geographical origin of Panax ginseng Meyer, a valuable medicinal plant, is important to both ginseng producers and consumers in the context of economic profit and human health benefits. We therefore aimed to discriminate between the cultivation regions of ginseng using the stable isotope ratios of C, N, O, and S, which are abundant bio-elements in living organisms. Methods and Results : The C, N, O, and S stable isotope ratios were measured by isotope ratio mass spectrometer, and then these isotope ratios profiling was statistically analyzed with chemometrics. The various isotope ratios found in Panax ginseng roots were significantly influenced by region, cultivar, and the interactions between these two factors (P ≤ 0.0002). In particular, δ18O was lower in ginseng roots grown at high altitudes (r = −0.47), while δ34S was higher in ginseng roots grown close to coastal areas (r = −0.48). Chemometric results provided discrimination between the majorities of different cultivation regions. Conclusion : Our case study extends the understanding about the variation of C, N, O, and S stable isotope ratios in ginseng root depending on cultivation region. Hence, the analysis of stable isotope ratios is a suitable tool for discrimination between the regional origins of ginseng samples from Korea, with potential application to other countries.
        35.
        2017.05 서비스 종료(열람 제한)
        Background : Corrosion is one of the most devastating problems faced by most industries. Mild steel has played a vital role in various fields due to the excellent mechanical properties of mild steel such as low density, high strength-to-weight ratios, good environmental stability, high thermal conductivity, and corrosion resistance. Methods and Results : The total phenolic contents (TPC) and total flavonoid contents (TFC) of the methanolic extract of C. grandiflora and R. verniciflua leaf have been examined, and its corrosion inhibition performance was investigated by weight loss and electrochemical impedance spectroscopy (EIS) and polarization measurements. The surface morphology of mild steel was analyzed by scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDX) and by atomic force microscopy (AFM). The percentage composition of polyphenolic compounds was found to be higher in C. grandiflora and R. verniciflua plant extracts, and it was proved to be a superior, eco-friendly, and anti-corrosive inhibitor for mild steel in 1M of H2SO4. The Tafel polarization studies indicate that the plant extract is a mixed-type inhibitor. Scanning electron microscopy/energy -dispersive X-ray spectroscopy (SEM-EDS), and atomic force microscopy (AFM) studies confirmed the formation of a protective film on the metal surface. The corrosion inhibition of the C. grandiflora and R. verniciflua plant extracts was characterized by Fourier transform infrared (FT-IR), UV-visible spectra, and wide-angle X-ray diffraction (XRD) studies; these show the strong interaction between the metal surface and the inhibitor. Conclusion : The methanolic extract was prepared the two different plants like C. grandiflora, and R. verniciflua was studied the corrosion inhibition on the mild steel specimen in acidic medium through various methods involving weight loss measurements, EIS, and potentiodynamic polarization. The results shows that the C. grandiflora, and R. verniciflua plant extracts illustrate an effective corrosion inhibitor for mild steel with good anticorrosion properties in acidic environmen
        36.
        2016.10 서비스 종료(열람 제한)
        Background : Garlic is one of the important vegetables and a source of natural anti-oxidants. This study was carried out to investigate the antioxidant activities including 2,2-diphenyl-1-picr yl-hydrazil (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), ferric reducing antioxidant power (FRAP), reducing power (RP) and total polyphenol content (TPC) of A. ampel oprasum L. Methods and Results : DPPH, ABTS, FRAP, TPC, and RP were analyzed the extract of aerial plant part in 22 accessions of A. ampeloprasum by spectrophotometry mathod. A. tuberosum Rottler ex Spreng. was used as a control. DPPH was ranged from 0.35 to 3.06 ㎍ ASC ㎎-1 dw. ABTS and FRAP showed wide variation from 4.37 to 29.30 ㎍ Trolox ㎎-1 dw and 3.18 to 10.8 ㎍ ASC ㎎-1 dw, respectively. RP and TPC were ranged from 3.43 to 9.51 ㎍ GAE ㎎-1 dw, and 0.8 to 18.63 ㎍ ASC ㎎-1 dw, respectively. Cluster analysis of A. ampeloprasum germplasm was divided into two major groups. Group Ⅰ (7 accessions) characterized as higher antioxidant activities than the group Ⅱ (15 accessions) and had similar antioxidant activities with A. tuberosum as a control. FRAP value showed a significant strong positive correlation with DPPH (r = 0.868*) and ABTS activity (r = 0.826*). Principal component analysis showed that the first two principal components (PC1 and PC2) cumulatively explained 85.64 % of total variation. Conclusion : From the above results, we may suggest that A. ampeloprasum aerial parts might have useful as a new material for functional food.
        37.
        2016.10 서비스 종료(열람 제한)
        Background : The natural stable isotope ratio of common bio-elements like carbon (C), nitrogen (N), oxygen (O), or sulfur (S) varies with diverse isotope fractionation processes in nature. Therefore, measuring the variation of these stable isotope ratios in ginseng roots can be a feasible tool to discriminate the geographical origins of ginseng in Korea. Methods and Results : The 3-year-old six Korean ginseng cultivars were cultivated at the five regions in Korea, and then used for measuring the stable isotope ratios of C, N, O, and S by isotope ratio mass spectrometry (IRMS). The mean C, N, O, and S stable isotope ratio values in the ginseng roots significantly differed according to the cultivation regions (p < 0.05). However, these isotope ratios in ginseng roots had relatively weak discriminative power against to the ginseng cultivars at each cultivation region. The interaction of the cultivation region and ginseng cultivar type also significantly affected to the C, N, O, and S stable isotope ratio in ginseng roots (p < 0.0001). The two-dimensional plots associated with the N stable isotope ratio can effectively separate the ginseng roots in Jinan compared to those in the other regions. The partial least squares-discriminant analysis showed more significant separation between ginseng geographical origins compared to the principal component analysis. Conclusion : Our findings improve our understanding of how the isotope composition of ginseng roots varies with respect to cultivation regions and cultivars, and suggest that the analysis of the stable isotope ratios combined with chemometrics can be used as a feasible tool to discriminate geographical origin of ginseng in Korea.
        38.
        2015.07 서비스 종료(열람 제한)
        In this study, genetic diversity of wild Codonopsis lanceolata collected in Korea were analysed using SSR makers. Wild C. lanceolata roots were collected in Jeollanam-do Jangheung-gun Choentae Mountain as in roots. The wild C. lanceolata plants were cultivated in Chungbuk National University greenhouse and the leaves were sampled from 36 plants. The genomic DNA of C. lanceolata was extracted using CTAB. PCR was performed using a program of 35 cycles at 94℃ for 30 sec, 60℃ for 30 sec, and 72℃ for 30 sec with an pre-denaturation of 94℃ for 5 min and a final extension of 72℃ for 30 min. The PCR reaction mixture contains 5 pmole of primers and 20 ng of DNA template in a 20 μL reaction volume. The genotype of the analyzed samples were very different. Therefore, the wild C. lanceolata collected in Korea look genetically diverse.
        39.
        2015.07 서비스 종료(열람 제한)
        Codonopsis lanceolata is a perennial climber. The roots are used as medicinal materials or vegetables. Recently, demand for C. lanceolata is increasing as a healthy food. C. lanceolata is distributed in India and East Asia such as China, Japan as well as Korea. In South Korea, this plant is widely cultivated in Gangwon-do province. No C. lanceolata varieties were developed in Korea. The objective of this study is to analyze genetic diversity of C. lanceolata cultivated in Korea using SSR makers. C. lanceolata roots were collected in each region were cultivated in Chungbuk National University greenhouse. Samples were obtained from fresh leaves of 5 plants from each collection region. The genomic DNA was extracted using CTAB. Genetic diversity was analysed using 4 sets of C. lanceolata SSR makers. PCR was performed in total 20 μL reaction volume containing 20 ng of DNA template, 5 pmole of primers. The genotypes of the analyzed samples were very similar. That means that the genetic diversity of C. lanceolata cultivated in Korea is very low.
        40.
        2015.07 서비스 종료(열람 제한)
        High yield is the most important trait in various agricultural characteristics. Many approaches to improve yield have been tried in conventional agricultural practice and recently biotechnological tools employed for same goal. Genetic transformation of key genes to increase yield is one way to overcome current limitation in the field. We are producing transgenic soybean plants through high efficient transformation method by introducing all gene member with AT-hook binding domain, hoping to obtain manageable delay of senescence. Many transgenic soybean plants are growing in greenhouse and GMO field, and will be evaluated their senescence and any association with yield increase.
        1 2 3 4