검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,673

        21.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Structural inversion refers to the reverse reactivation of extensional faults that influence basin shortening accommodated by contractional faults or folds. On the Korean peninsula, Miocene inversion structures have been found, but the Cretaceous rocks on Geoje Island may have undergone inversion as early as the Upper Cretaceous. To evaluate the structural inversion on Geoje Island, located on the eastern side of South Korea, and to determine the effects of preexisting weakness zones, field-based geometric and kinematic analyses of faults were performed. The lithology of Geoje Island is dominated by hornfelsified shale, siltstone, and sandstone in the Upper-Cretaceous Seongpori formation. NE and NW-oblique normal faults, conjugate strike-slip (NW-sinistral transpressional and E-W-dextral transtensional) faults, and NE-dextral transpressional faults are the most prominent structural features in Geoje Island. Structural inversion on Geoje Island was evidenced by the sinistral and dextral transpressional reactivation of the NW and NE-trending oblique normal faults respectively, under WNW-ESE/NW-SE compression, which was the orientation of the compressive stress during the Late Cretaceous to Early Cenozoic.
        4,900원
        22.
        2023.07 구독 인증기관·개인회원 무료
        Due to the rise of global environmental awareness and concerns, many journal articles related to “fashion sustainability” have been disseminated over the last 20 years. According to Google Search Trends (2010-2021), the number of searches for “sustainable fashion,” “fashion clothing” and “fast fashion” has increased since 2016, particularly “sustainable fashion.” Despite a substantial amount of published papers, many research studies are fragmented and disconnected due to their specific research objectives, focuses, and approaches (Tian et al., 2018). A systematic literature review can identify key research themes, trends, and developmental patterns while also illuminating the complexity of the subjects. This study has three overarching objectives: (1) to provide a comprehensive report of scholarly articles published from 2010 to 2021 focusing on fashion sustainability research, (2) to identify research trends in fashion and sustainability, and (3) to identify significant sustainable and non-sustainable attributes in clothing selection, evaluation, and consumption processes.
        23.
        2023.07 구독 인증기관·개인회원 무료
        The assumption that more-is-better doesn’t hold when consumers want to limit the amount they consume. High calorie meals frustrate dieting plans, food with high salt content may lead to bad health outcomes and large quantity purchases may not fit within available storage spaces. The assumption in economics that marginal utility is always positive may not apply in situations when purchase quantities take on a wide range and when consumers have ideal points and unobserved constraints on their choices. In this paper we develop a model and estimator for locally-rational demand that identifies un- observed constraints on choice by allowing marginal utility to be negative. The model is applied to conjoint data of buy-one-get-one (BOGO) promotions and a scanner panel dataset of milk purchases where the e↵ect of locally-rational demand is prevalent.
        24.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, hybrid aerogels containing carbon nanoparticles (CNP) and multi-walled carbon nanotubes (MWCNT) were synthesized via sol–gel method using resorcinol/formaldehyde precursors through a hydrolysis-condensation reaction mechanism. Porous carbonaceous structures were achieved by freeze-drying of the organic gels followed by controlled carbonization under an inert gas. The samples were characterized by various techniques such as FTIR, BJH, FESEM, CV, and EIS. The specific surface area and total pore volume of the aerogel sample were measured to be as high as 452 m2/ g and 0.782 cm3/ g, respectively, thus enhancing the electric double-layer formation. Electrochemical tests on the samples showed a large specific capacitance (212 F/g) and an excellent cyclic stability over 3000 cycles. Performance of the synthesized structures was subsequently assessed as electrodes in a capacitive deionization (CDI) process. At the operating conditions of 1.6 V voltage, flow rate of 20 mL/min, and NaCl concentration of 1000 mg/L a promising adsorption capacity around 42.08 mg/g was achieved.
        4,200원
        25.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The rapid synthesis techniques and interesting multidisciplinary applications make carbon nanodots (CNDs) stand out from semiconductor quantum dots. Moreover, CNDs derived from green precursors have gained more importance beyond chemically derived CNDs due to sustainable synthesis opportunities. However, the presence of molecular impurities or intermediates or fluorophores was neglected during the entire process. Herein, we illustrate the sustainable synthesis of CNDs from Hemigraphis alternata plant leaves with extended carbonization procedure (3 and 9 min) along with simultaneous ethylene glycol and diethyl ether solvent treatment method for the successful removal of interfering fluorophores. To unravel the distinction between purified CNDs (P-CNDs) and organic fluorescent carbon nanostructures (org-FCNs), we carried out photophysical, structural, and morphological studies. A quantum yield (QY) of 69 and 42% was observed for crude org-FCNs, and crude P-CNDs; however after purification, QY of 1% and absence of one component from the fluorescent decays curve suggest the removal of fluorophores. Further, HR-TEM and DLS studies showed the quasi-spherical amorphous particles having < 10 nm particle size for P-CNDs. Besides, in vitro biocompatibility investigation and cellular uptake assay (1–100 μg/mL) against the MDA-MB 468 cell lines proves the ≥ 95% cell viability and good internalization for both org-FCNs and P-CNDs. Hence, our study shows the presence of fluorophore impurities in plant-derived CNDs, the removal and resemblance in biocompatibility properties. Hence, this information can be considered during the synthesis and isolation of CNDs. Simple and effective removal of impurities to harvest pure carbon nanodots (CNDs) through solvent-based selective separation method, and revelation of the cocktail flourphores similar to biocompatible blue fluorescent CNDs were studied.
        4,900원
        26.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Porous carbons are considered promising for CO2 capture due to their high-pressure capture performance, high chemical/ thermal stability, and low humidity sensitivity. But, their low-pressure capture performance, selectivity toward CO2 over N2, and adsorption kinetics need further improvement for practical applications. Herein, we report a novel dual-templating strategy based on molten salts (LiBr/KBr) and hydrogen-bonded triazine molecules (melamine–cyanuric acid complex, MCA) to prepare high-performance porous carbon adsorbents for low-pressure CO2. The comprehensive investigations of pore structure, microstructure, and chemical structure, as well as their correlation with CO2 capture performance, reveal that the dual template plays the role of porogen for multi-hierarchical porous structure based on supermicro-/micro-/meso-/ macro-pores and reactant for high N/O insertion into the carbon framework. Furthermore, they exert a synergistic but independent effect on the carbonization procedure of glucose, avoiding the counter-balance between porous structure and hetero-atom insertion. This enables the preferred formation of pyrrolic N/carboxylic acid functional groups and supermicropores of ~ 0.8 nm, while retaining the micro-/meso-/macro-pores (> 1 nm) more than 60% of the total pore volume. As a result, the dual-templated porous carbon adsorbent (MG-Br-600) simultaneously achieves a high CO2 capture capacity of 3.95 mmol g− 1 at 850 Torr and 0 °C, a CO2/ N2 (15:85) selectivity factor of 31 at 0 °C, and a high intra-particle diffusivity of 0.23 mmol g− 1 min− 0.5 without performance degradation over repeated use. With the molecular scale structure tunability and the large-scale production capability, the dual-templating strategy will offer versatile tools for designing high-performance carbon-based adsorbents for CO2 capture.
        4,300원
        27.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The development of heteroatoms doped inorganic nanocrystal-carbon composites (INCCs) has attained a great focus for energy applications (energy production and energy storage). A precise approach to fabricate the INCCs with homogenous distribution of the heteroatoms with an appropriate distribution of metal atoms remains a challenge for material scientists. Herein, we proposed a facile two-step route to synthesize INCC with doping of metal (α-Fe2O3) and non-metals (N, P, O) using hydrogel formed by treating hexachlorocyclotriphosphazene (HCCP) and 3, 4, 5-trihydroxy benzoic acid (Gallic acid). Metal oxide was doped using an extrinsic doping approach by varying its content and non-metallic doping by an intrinsic doping approach. We have fabricated four different samples (INCC-0.5%, INCC-1.0%, INCC-1.5%, and INCC-2.0%), which exhibit the uniform distribution of the N, P, O, and α-Fe2O3 in the carbon architecture. These composite materials were applied as anode material in water oxidation catalysis (WOC); INCC-1.5% electro-catalyst confirmed by cyclic voltammetry (CV) with a noticeable catholic peak 0.85 V vs RHE and maximal current density 1.5 mA.cm−2. It also delivers better methanol tolerance and elongated stability than RuO2; this superior performance was attributed due to the homogenous distribution of the α-Fe2O3 causing in promotion of adsorption of O2 initially and a greater surface area of 1352.8 m2/ g with hierarchical pore size distribution resulting higher rate of ion transportation and mass-flux.
        4,500원
        28.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In today’s world, carbon-based materials research is much wider wherein, it requires a lot of processing techniques to manufacture or synthesize. Moreover, the processing methods through which the carbon-based materials are derived from synthetic sources are of high cost. Processing of such hierarchical porous carbon materials (PCMs) was slightly complex and only very few methods render carbon nano-materials (CNMs) with high specific surface area. Once it is processed, which paves a path to versatile applications. CNMs derived from biological sources are widespread and their application spectrum is also very wide. This review focuses on biomass-derived CNMs from various plant sources for its versatile applications. The major thrust areas of energy storage include batteries, super-capacitors, and fuel cells which are described in this article. Meanwhile, the challenges faced during the processing of biomass-derived CNMs and their future prospects are also discussed comprehensively.
        7,000원
        29.
        2023.05 구독 인증기관·개인회원 무료
        The ability to both assay the presence of, and to selectively remove ions in a solution is an important tool for waste water treatment in many industrial sectors, especially the nuclear industry. Nuclear waste streams contain high concentrations of heavy metals ions and radionuclides, which are extremely toxic and harmful to the environment, wildlife and humans. For the UK nuclear industry alone, it is estimated that there will be 4.9 million metric tonnes of radioactive waste by 2125, which contains a significant number of toxic radionuclides and heavy metals. This is exacerbated further by increased international growth of nuclear new build and decommissioning. Efforts to remove radionuclides have been focused on the development and optimisation of current separation and sequestering techniques as well as new technologies. Due to the large volumes of waste the techniques must be economical, simple to use and highly efficient in application. Magnetic nanoparticles (MNPs) offer a powerful enhancement of normal ion exchange materials in that they can be navigated to specific places using external magnetic fields and hence can be used to investigate challenges such as, pipework in preparation of decommissioning projects. They also have the potential to be fine-tuned to extract a variety of other radionuclides and toxic heavy metals. It has been demonstrated that with the right functional groups these particles become very strongly selective to radionuclides, such as Uranium. However, this new technology also has the potential to effectively aid nuclear waste remediation at a low cost for the separation of both radionuclides and heavy metals. In this work, we investigate the origin of the selectivity of superparamagnetic iron oxide nanoparticles (SPIONs) to Uranium by making systematic changes to the existing surface chemistry and determining how these changes influence the selectivity. Identifying the mechanism by which selected common nuclear related metals, such as Na(I), K(I), Cs(I), Ca(II), Cu(II), Co(II), Ni(II), Cd(II), Mg(II), Sr(II), Pb(II), Al(III), Mn(II), Eu(III) and Fe(III), are sorbed will allow for specific NP-target (nanoparticle) ion interactions to be revealed. Ultimately this understanding will provide guidance in the design of new targeted NP-ligand constructs for other environmental systems.
        34.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Echeveria is a genus belonging to the Crassulaceae family that comprises approximately 170 species. It is a representative plant known as a succulent with economic potential in the floriculture industry. Echeveria plants are widely distributed in dry environments and endemic to Mexico. These plants have a rosette formation and varied leaf colors and shapes, which are characteristics of interest for landscaping, cut flowers, or interior decoration. Given their range of locations in different climates or indoor conditions, it is important to have an understanding and knowledge of their leaf morphology and anatomy and how they function to provide optimum care and management. Owing to high demand in horticultural markets, many breeders have crossed their desired species. However, this method has progressively increased the number of species without proper records of parents or other natural unintended crossings, creating phylogenetic problems and identification issues. The use and understanding of phenotypes, anatomical data, and/or research to aid in taxonomic issues and improve cultural management practices have been reviewed and discussed in this paper. In this review, we have provided a brief background of Echeveria species, focusing on the challenges and studies that have attempted to address these issues.
        4,000원
        35.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The surface of carbon films deposited with inverted plasma fireballs is analysed in this paper. Measurements were conducted with Raman spectroscopy, atomic force microscopy and nanoindentation. The latter was used to obtain Young’s modulus as well as Martens and Vickers hardness. The roughness of the film was measured by atomic force microscopy and its thickness was measured. It was shown with Raman spectroscopy that the films are homogeneous in terms of atomic composition and layer thickness over an area of about 125 × 125 mm. Furthermore, it was demonstrated that inverted plasma fireballs are a viable tool for obtaining homogeneous, large area carbon films with rapid growth and very little energy consumption. The obtained films show very low roughness.
        4,000원
        36.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Lead sulfide ( PbS ) nanocrystals anchored on nitrogen-doped multiwalled carbon nanotubes ( CNx ) have been synthesized employing an environmentally friendly and inexpensive wet chemistry process. CNx∕PbS composites have been examined by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. Theorical ab initio calculations have been developed to determine the samples structural, morphological and optical properties to explain the experimental evidences. The PbS nanoparticles exhibit of 4 nm to 27 nm particle size with a face-centered cubic crystal structure and are homogeneously distributed along the carbon nanotubes. The nitrogen-doped CNTs acts as binding sites for the PbS clusters as ab initio theoretical study suggests.
        4,000원
        37.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to their fascinating properties, there is a rise in the critical consideration of carbon-based nanomaterials in a plethora of applications. Carbon nanomaterials, such as nanotubes, graphene, fullerenes, and nanodiamonds, have broad applicability and potential research prospects. In the past few years, the developments and consumption of still smaller nanomaterials, namely graphene quantum dots and carbon nanodots or carbon dots (CDs) have been explored. Since carbon as a component exhibits insignificant cytotoxicity and remarkable biocompatibility, CDs have found a wide scope of potential applications. Owing to their fascinating aspects, such as small size, biocompatibility, low toxic nature, environment-friendliness, costeffectiveness, ease of chemical functionalization, derivatization and surface modification, and photoluminescence tenability, CDs have been widely acknowledged. CDs have found major prospects in the areas of catalysis, sensors, and optical and bio-related applications. CDs are generally synthesized by employing techniques of pyrolysis, laser ablation, arc discharge, electrochemical method; hydrothermal and solvothermal techniques; and microwave and ultrasonic irradiations. This review article presents a brief account of the major properties of CDs, and applications, with particular emphasis on the green and environment-friendly synthesis methodologies. An overview of the microwave and ultrasound irradiation-induced syntheses for the preparation of CDs is presented in the light of green chemistry principles. In addition, some of the green and environmentally benign precursors for the production of CDs are outlined. The most recent work on CDs is included in this review article.
        6,600원
        38.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The biocarbon (SKPH) was obtained from Sargassum spp., and it was evaluated electrochemically as support for the CO2 reduction. The biocarbon was synthesized and activated with KOH, obtaining a high surface area (1600 m2 g− 1) due to the activation process. Graphitic carbon formation after pyrolysis was confirmed by Raman spectroscopy. The XRD results show that SKPH has an amorphous structure with peaks corresponding to typical amorphous carbonaceous materials. FTIR was used to determine the chemical structure of SKPH. The bands at 3426, 2981, 2851, and 1604 cm− 1 correspond to O–H, C-H, and C-O stretching vibrations, respectively. Then, it compares SKPH films with different carbon films using two electrolytic systems with and without charge transfer. The SKPH film showed a capacitive behavior in the KOH, H2SO4, and, KCl systems; in the acid medium, the presence of a redox couple associated with carbon functional groups was shown. Likewise, in the [Fe(CN)6]−3 and Cu(II) systems, the charge transfer process coupled with a capacitive behavior was described, and this effect is more noticeable in the [Fe(CN)6]−3 system. Electrodeposition of copper on SKPH film showed two stages Cu(NH 3)2+ 4 /Cu(NH 3)+ 2 and Cu(NH 3)+ 2 ∕Cu in ammonia media. Hydrogen formation and the activity of CO2 are observed on SKPH film and are favored by the carbon’s surface chemistry. Cu/SKPH electrocatalyst has a catalytic effect on electrochemical reduction of CO2 and inhibition of hydrogen formation. This study showed that the SKPH film electrode responds as a capacitive material that can be used as an electrode for energy storage or as metal support.
        4,900원
        39.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        There is an ever growing interest in the development of biochar from a large variety of agrowastes. Herein, the main objective is the conversion of pomegranate peel powder biochar and its post-functionalization by phosphoric acid treatment, followed by arylation organic reaction. The latter was conducted using in situ-generated diazonium salts of 4-aminobenzoic acid ( H2N-C6H4-COOH), sulfanilic acid ( H2N-C6H4-SO3H) and Azure A dye. The effect of diazonium nature and concentration on the arylation process was monitored using thermal gravimetric analysis (TGA) and Raman spectroscopy, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). SEM pictures showed micrometer-sized biochar particles with tubular structure having about 10–20 μm-wide channels. SEM studies have shown that arylation did not affect the morphology upon arylation. The porous structure did not collapse and withstood the arylation organic reaction in acid medium did not collapse upon arylation. TGA and Raman indicated gradual changes in the arylation of biochar at initial concentrations 10– 5, 10– 4 and 10– 3 mol L− 1 of 4-aminobenzoic acid. The detailed Raman spectra peak fittings indicate that the D/G peak intensity ratio leveled off at 3.35 for 4-aminobenzoic acid initial concentration of 10– 4 mol L− 1, and no more change was observed, even at higher aryl group mass loading. This is in line with formation of oligoaryl grafts rather than the grafting of new aryl groups directly to the biochar surface. Interestingly, Azure A diazonium salt induced much lower extent of surface modification, likely due to steric hindrance. To the very best of our knowledge, this is the first report on diazonium modification of agrowaste-derived biochar and opens new avenues for arylated biochar and its applications.
        4,200원
        1 2 3 4 5