검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 25

        21.
        2006.06 KCI 등재 서비스 종료(열람 제한)
        Germination characteristics and alterations in soluble sugar-starch transition and phytic acid during germination were studied in rice seeds under saline conditions. NaCl significantly reduced the speed of germination. Also, the radicle growth out of seeds was severely inhibited by the exposure to NaCl solution, thus, seeds were almost impossible to grow to seedlings. Soluble sugar was remarkably accumulated, whereas starch was decomposed stepwise during seed germination. The metabolism of soluble sugar and starch in germinating seeds showed a distinct difference. The level of phytic acid in seeds decreased in all NaCl treatments during germination, but the level was affected differently by NaCl concentration in the two varieties. Overall, our results suggest that salt stress retard the radicle growth of rice seeds, and affect the starch-to-sugar conversion and the decomposition of phytic acid differently in two varieties.
        22.
        2005.12 KCI 등재 서비스 종료(열람 제한)
        Seedlings of two rice genotyopes, cvs. Ilpumbyeo and Gancheokbyeo, were exposed to 0, 50 and 100 mM NaCl in nutrient solution for nine days. Plants were collected at the interval of 3 days and organic and inorganic solutes in leaves and roots and antioxidative enzyme activity in leaves were determined. Under salinity, the accumulation of soluble sugars occurred considerably in the older leaves of stressed seedlings compared to younger leaves and roots. The endogenous Na+ contents markedly increased at higher NaCl concentration in leaves and roots of seedlings, though it was higher accumulated in roots. Salinity resulted in an excessive proline accumulation in the stressed plants. A more pronounced increase was observed in Gancheokbyeo leaves. SOD activity in Impumbyeo cannot found any remarkable change, whereas, in Gancheokbyeo, its activity was rapidly decreased. CAT and POD activities increased with an increase in NaCl concentration in both genotypes. In sum­mary, the high capacity of rice seedlings to overcome an unfavorable growth condition such salt stress appears to be related to an adequate partition of organic solutes between shoots and roots and to changes in absorption, transport and re-translocation of salts.
        23.
        2005.03 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to examine the physiological and biochemical responses against UV-B radiation in the seedling of 15 different rice cultivars, having the different physiological sensitivities. Out of 15 rice cultivars tested, moderate and susceptible groups showed significant decreases in biomass and RGR (relative growth rate). Contents of total chlorophyll were reduced remarkedly by irradiation of UV-B. In all rice cultivars tested, the content of chlorophyll a was strongly decreased, while the contents of chlorophyll b were slightly reduced without showing clear different among three groups and 15 cultivars. Carotenoid content was largely reduced by UV-B radiation, whereas polyamine content was moderately increased. The contents of MDA (malondialdehyde) that reflect the level of lipid peroxidation of cell membranes were clearly increased by UV-B stress, showing higher content in susceptible cultivars than moderate and torelant cultivars. The physiological important parameters highly related to visible injury were leaf color, chlorophyll, carotenoid, and lipid peroxidation, whereas biomass and polyamines were not closely correlated. Based on this results, it was concluded that changes of visible injury and the contents of chlorophyll and MDA could be adequately applied and utilized as physiological indicators to UV-B radiation
        24.
        2004.06 KCI 등재 서비스 종료(열람 제한)
        In plants, nitrogen is the major component for growth and development. Leaf growth is based on the division, elongation and maturation of cells, which are used for making of epidermis, mesophyll, bundle sheath, xylem, phloem and so on. Dynamics of these tissues with respect to nitrogen are required for better understanding. This experiment was conducted to evaluate effect of nitrogen on the elongation of epidermal and guard cell of two rice (Oryza sativa L.) varieties, Seoanbyeo and Dasanbyeo on May 2000 at Chungbuk national university in Cheongju. After transplaning the 20-day-old seedlings into a/5000 pots, the main characteristics related with cell elongation were investigated and evaluated. A maximum. leaf length reached at 7 or 8 days after emerging from the collar, and also the leaf elongation rates were greatly affected by the increase of N application rate. The initial and final cell length were about 17~mu~textrmm and 130~mu~textrmm , respectively. Cell divisions occurred within 1.0mm from leaf base. With die higher nitrogen application rate of 22 kg-N 10~textrma-1 , cell division per hour was greater 1.5 to 1.9 and 1.2 to 1.3 fold as compared to the N application rate of 0 and 11 kg-N 10~textrma-1 , respectively. Cell enlargement of epidermal and guard cell under higher N application rate (22kg-N 10~textrma-1 ) was finished within about 20 (Seoanbyeo) and 15 hours (Dasanbyeo), while it took much time, about 30 hours.
        25.
        2004.06 KCI 등재 서비스 종료(열람 제한)
        In order to investigate low molecular antioxidants synthesized by enhanced UV-B radiation, we used the seedlings of two rice varieties. Woonjangbyeo, UV-tolerant, and Hwajoongbyeo, UV-susceptible, were subjected under supplemental UV-B irradiation. When rice seedlings were irradiated with UV light for short period, biosynthesis of total phenolic compound, ascorbate and glutathione were momently reduced. With an increase of UV-B radiation, however, those were slightly synthesized. The content of lipid peroxides in UV-challenged rice leaves was considerably increased after 12 hrs of UV-B treatment. Lipoxygenase activity under supplemental UV-B radiation was differently responded on rice varieties.
        1 2