도로는 다양한 재료와 단면으로 구성된 구조물이기 때문에 계절적 및 재료 물성특성 뿐만 아니라 포장체 각 층의 구조적 적정성 또는 지지력 정도를 파악하는 것이 무엇보다 중요하다. 현재, 기존 동상방지층 설계법에 따르면, 동상방지층은 포장체의 구조적 적정성과는 무관하게 온도조건에 따른 동결깊이에 따라 일률적으로 결정되고 있다. 이러한 동결깊이를 포장구조설계에 적용하다 보니 포장 설계의 부실 내지는 과다설계의 우려가 있다. 이에 본 논문은 2m 이하 저성토부, 절토부 및 절성경계부 등을 구분하여 포장 하부층에서 동상방지층의 구조적 역할을 규명하기 위하여 Falling Weight Deflectormeter(FWD) 시험을 수행하였다. 전국 10개 현장에 대하여 보조기층면에서 FWD 시험을 수행하였다. 각각의 단면은 동방방지층이 있는 구간과 없는 구간으로 구분하여 실험을 수행하였다. 이번 현장 실험을 통하여 동상방지층이 있는 경우가 없는 경우에 비해 처짐량이 작게 측정되어 동상방지층이 포장체에서 구조적 역할을 담당하는 것을 확인 할 수 있었다. 특히 절토부에서 동상방지층이 있는 경우에 처짐량 값이 약 15~55% 정도 감소하며, 절성경계부에서 동상방지층이 있는 경우에 처짐량 값이 약 11~64%, 저성토부의 경우 약 2~38%정도 감소하는 것으로 나타났다. SCI를 이용하여 분석한 결과, 동상방지층의 두께가 전체 포장체의 구조적인 능력에 약 24% 차지하는 것으로 나타났다. 피로수명은 동상방지층이 있는 구간이 없는 구간에 비해 약 2배 높은 결과를 보여 피로균열 저항성을 증진시키는 것으로 나타났다. 이것은 동상방지층이 포장체에서 구조적인 역할을 한다는 의미이다.
본 연구에서는 국내 LTPP 구간에서 수행된 FWD 시험의 결과를 바탕으로 섬유보강, 폴리머 개질, 일반 아스팔트 포장의 구조적 성능을 비교 평가하였다. FWD 시험 결과, 표층 하단부의 인장변형량이 섬유보강 아스팔트는 29%, 폴리머 개질 아스팔트는 21% 저감되는 것을 확인하였다. 또한 FWD 처짐량을 역산하여 각 층의 탄성계수를 추정한 후 이를 바탕으로 AASHTO 설계방법, 구조적 해석 방법 및 생애주기비용분석을 통해 섬유보강 및 폴리머 개질 아스팔트 포장의 비용 효과를 분석하였다. 분석 결과, 섬유보강은 약 5cm, 폴리머 개질은 약 3cm의 아스팔트 층 두께 감소 효과를 보여주었다. 그러나 섬유보강 및 폴리머 개질 아스팔트의 고가격으로 인하여 전체 시공재료비는 일반 아스팔트 포장에 비해 상승하는 결과를 보여주었다. 생애주기비용 결과는 초기 공사비는 섬유보강 및 폴리머 개질 아스팔트 포장이 높지만, 유지관리비용 및 사용자비용은 감소하는 것으로 나타났다.
본 연구의 목적은 현재 국내에서 적용되고 있는 동결지수와 동결깊이 산정의 타당성을 검증하는 것이다. 이에 국내에서 운영되고 있는 LTPP-SPS(Long Term Pavement Performance- Specific Pavement Study)구간의 대기온도와 포장체 깊이별 온도 데이터를 이용하여 동결지수와 동결깊이를 산정하였으며, 기존 계산식을 이용하여 산출된 동결깊이와 비교 분석하였다. 또한 이 구간들의 인근 측후소 데이터를 이용하여 연도별 동결지수 추이를 분석하였다. 본 연구 결과, 지구온난화에 의해 1987년 이후에는 동결지수가 급격히 감소하였으며, 현재 도로설계 시 적용되고 있는 동결지수가 과하게 적용되고 있음을 알 수 있었다. 이에 동결지수 산정 시 현행 30년 데이터를 토대로 산정하기보다 기후가 변화된 시점부터 현재까지의 추이를 분석하는 것이 바람직 할 것으로 사료된다. 또한 LTPP-SPS 구간에서 측정된 포장체 깊이별 온도데이터를 분석한 결과, 동상방지층이 설계되어 있는 3개구간에서 대체적으로 보조기층까지만 동결이 발생하는 것으로 나타나, 동상방지층이 제 역할을 수행하지 못하는 것으로 나타났다. 실제 측정된 동결깊이와 계산식을 통해 산정된 동결깊이를 비교한 결과, 노상동결관입허용법을 이용한 설계방법이 실제 측정된 동결깊이와 가장 유사한 경향을 나타내었다.
본 연구는 마샬 시험기를 이용하여 아스팔트 혼합물의 균열저항성을 평가할 수 있는 보다 간편하고 합리적인 측정시스템을 개발하는데 목적이 있다. 균열저항성 평가를 위한 파라메타로서 파괴에너지를 이용하였다. 마샬 시험기는 기본적으로 공시체 외부에 거치한 LVDT를 이용하여 수직변형률을 측정하는 시스템이며, 이 같은 외부 수직변형률 측정방식은 하중 스트랩 부분에서 발생하는 국부적인 변형으로 인해 측정오차를 야기할 가능성이 있다. 따라서 추가적인 계측 시스템을 설치하지 않고 기본적인 마샬 시험기를 이용하여 혼합물의 파괴에너지를 측정하기 위해서는 공시체 외부에 거치한 LVDT를 이용한 수직변형률 측정값이 파괴에너지 산정에 적용가능한지 여부를 검증하여야 한다. 이를 위해 본 연구에서는 공시체 중앙부분에서의 수평변형률과 외부에 거치한 LVDT를 이용한 수직변형률을 측정하는 두 가지 방식의 간접인장강도실험을 수행하여 그 차이를 비교 분석하였다. 실험결과, 외부 수직변형률 측정의 문제점으로 지적되었던 하중 스트랩 부분에서 발생하는 국부적인 변형은 파괴시점 이전에는 극히 적은 것으로 나타나 파괴에너지 계산에 오차를 유발하지 않음을 보여주었다. 또한 외부 수직변형률 측정의 실험변동성을 확인한 결과, 변동계수가 15% 이하로 마샬시험기를 이용한 균열저항성 평가시스템에 이용 가능함을 알 수 있었다.
선회다짐기를 이용하여 아스팔트 혼합물의 배합설계를 하는 경우 선회다짐기의 설계 다짐횟수가 필요하다. 본 연구는 이러한 선회다짐기의 설계 다짐횟수를 결정하는데 그 목적이 있다. 선회다짐횟수의 선정을 위하여 세 가지 방법을 이용하였다. 첫 번째 방법은 Marshall 다짐기로 75회 다짐된 혼합물의 밀도와 동일한 밀도를 주는 선회다짐횟수를 선정하는 것이며, 두 번째 방법은 Marshall 다짐기로 75회 다짐된 혼합물의 변형강도와 동일한 변형강도를 주는 선회다짐횟수를 선정하는 것이다. 세 번째 방법은 선회다짐횟수에 따른 공극률을 측정하여 공극률 4%에 해당하는 다짐횟수를 찾아 결정하는 방법이다. 실내 실험을 위해 총 10가지 종류의 아스팔트 혼합물(1가지 골재×10가지 입도×1가지 아스팔트 바인더)이 제작되었다. 세 가지 방법을 종합한 결과, 아스팔트 혼합물의 배합설계를 위한 설계 선회다짐횟수는 100회로 결정되었다. 이러한 결과는 외국에서 사용되고 있는 설계 선회다짐횟수와 유사한 경향을 보이는 결과로, 향후 국내에서 선회다짐기를 이용한 아스팔트 혼합물의 배합설계가 이루어질 경우 적용이 가능할 것으로 판단된다.
일반적으로 아스팔트 개질재의 경우 아스팔트 바인더의 고온 점성을 증가시킬 뿐만 아니라 믹싱 및 포설온도에서의 점도 또한 증가시켜 높은 생산온도 및 시공온도를 요구하게 된다. 이와 달리 Wax의 경우 아스팔트 바인더의 강성을 증가시키기도 하지만 일정 온도가 넘으면 물처럼 유동성을 확보해 믹싱 및 포설온도에서의 점도를 낮추어 작업성을 높이는 효과가 있다. 본 연구에서는 실내실험을 통해 PE Wax가 아스팔트 바인더에 첨가되었을 경우 그 특성을 분석하였다. 이를 위해 SBS, 폐타이어 고무분말 개질 아스팔트 바인더와 비교 분석하였다. 또한 Wax가 기존 개질재인 SBS, 폐타이어 고무분말과 함께 사용되었을 경우 그 효과를 분석하였다. 실험 결과, Wax type I은 내유동성 강화에 큰 효과가 있으며 작업성 개선에 약간의 효과가 있는 것으로 나타났다. Wax type II는 아스팔트 바인더의 작업성 개선에 크게 기여하고, 상온에서 부드러운 특성으로 균열에 대한 저항성을 증진시키는 것으로 나타났다.
포장하부구조의 지지력을 평가하기 위해 많이 사용되는 방법은 평판재하시험(Plate Bearing Test) 현장 CBR시험(California Bearing Ratio Test) 등이 있으나, 시험을 수행하는데 있어 많은 인력과 시간이 소비되는 단점이 있어, 많은 연구자들은 현장에서 포장하부구조의 강성을 측정할 수 있는 간편한 방법으로 동적 콘 관입시험(Dynamic Cone Penetrometer Test)을 제안하였다. 이에 본 연구에서는 DCP의 현장적용성을 평가하기 위해, 총 4개 현장의 노상층과 보조기층에서 DCP, 평판재하시험, 현장CBR시험, FWD시험을 동시에 수행하여 그 결과를 상호 비교 분석하였다. 그 결과 DCPI, MFWD, PBT_ K30은 서로 일정한 상관관계가 존재하는 것으로 나타났으나, CBR은 다른 결과 값들과 비교한 결과 상관관계가 매우 낮은 것으로 나타났다. 본 연구에서는 이 결과로부터 DCPI-MFWD, DCPI-PBT_ K30 관계식을 다음과 같이 제안하였다.
현재의 마샬 배합설계는 공극률, VFA. VMA와 함께 가열 아스팔트 혼합물의 현장 공용성과 관련이 적은 안정도와 흐름값을 포함하고 있다. 게다가, 안정도와 흐름값은 거의 대부분 기준값에 만족하며. 최적 아스팔트 함량(OAC)은 공극률, VFA, VMA와 같은 용적특성에 의해 결정되고 있다. 그러므로 많은 연구자들은 현장 공용성과 관계를 가지는 혼합물을 만들기 위하여 안정도와 흐름값을 대신할 수 있는 역학적 특성에 관심을 가지고 있다. 본 연구에서는 마샬 배합설계방법의 안정도와 흐름값을 대신하여 역학적 특성과 관련있는 변형강도(SD)와 파괴에너지(FE)를 도입하는 배합설계를 제안할 것이다. Kim test로부터 소성변형 저항성과 상관성이 높은 변형강도(SD)와, 간접인장시험으로부터 피로균열을 모사하는 파괴에너지 (FE)를 도입하였다. 현재의 배합설계방법과 제안한 배합설계 방법을 비교하기 위하여 4가지 아스팔트 흔합물을 사용하였다. 제안한 배합설계가 현재의 배합설계방법에 비해 OAC결정에 역학적 특성이 반영되는 결과를 볼 수 있었다.
본 연구는 노후된 시멘트 콘크리트 포장 위에 덧씌운 아스팔트 혼합물의 반사균열 지연을 위하여 바인더 2가지 일반과 개질, 바닥 보강재로 그리드 3종류와 Fabric 2종류의 효과를 평가하기 위하여 수행하였다. 보강재는 공시체 제조시 미리 슬래브 몰드 바닥에 깔고 가열 아스팔트 혼합물을 몰드에 부은 후 다짐을 하여 아스팔트 슬래브 공시체와 일체화시켜 콘크리트 블록 위에 덧씌우기 형태로 택코팅하여 부착하였다. 본 연구를 위하여 휨파괴(mode I) 및 전단파괴(mode II)반사균열 시험을 수행하였다. 시험결과, 일부의 그리드의 보강이 휨파괴 및 전단파괴에 의한 반사균열의 지연에 효과가 있는 것으로 나타났다. 특히 LDPE 개질아스팔트와 함께 사용하면 반사균열 지연에 큰 효과가 있음을 알 수 있었다.
본 논문은 정하중하에서 김테스트를 사용하여 아스팔트 콘크리트의 소성변형과 변형강도가 공시체에 크기에 미치는 영향에 대해 연구하였다. 2가지 골재(편마암, 화강암)와 6가지 아스팔트를 사용하여 총14개의 밀입도 혼합물을 사용하였다. 마샬 배합설계를 통해 최적아스팔트 함량을 구하고 결정된 최적아스팔트 함량으로 마샬공시체 (S=10cm)와 자이레토리 공시체(S=15cm)를 제작하여 마샬안정도시험, 휠트래킹시험, 개발된 김테스트(Kim test)를 수행하였다. SAS 분석을 통하여 공시체의 지름이 김테스트의 결과에 중요한 변수가 아닌 것을 알았으나 공시체의 두께는 KD에 주용한 변수가 되는 것을 알았다. KD값에 y값이 사용되어 영향을 미치는 것으로 판단되었다. 공시체의 두께를 6.6cm 이상으로 제작하여 김테스트에 적용 할때에는 마샬안정도에서와 같이 y 값에 따른 보정계수를 사용하거나 시험시 6.6cm 미만으로 제작하여야 할 것이다. 향후 보정계수 사용에 관한 연구도 가능할 것으로 판단된다.