양송이는 1960년대부터 재배법이 확립되면서 농가의 소득 작목으로 정착되었고, 주로 서양에서 이용하는 식자재의 하나였지만, 최근에는 식문화의 변화등으로 다양한 방법으로 소비가 증가되고 있는 버섯이다.
본 실험에서는 양송이버섯의 균주별 자실체의 아질산염 소거능을 비교분석 하였다. 식품분야에서는 아질산나트륨 또는 아질산칼륨을 말하며 가공된 햄, 소시지, 이크라(ikura) 등에 색소를 고정시키기 위해서 이용되고 가열조리 후 선홍색의 유지에 도움이 되지만 2급 및 3급 amine류와 반응하여 발암물질인 Nitrosoamine을 생성하며, 체내에서 diazoalkane(CnH2nN2)으로 변화하여 핵산이나 단백질 또는 세포내의 유용성분을 알카리화함으로써 각종 암을 유발한다고 알려져 있다. 양송이 66균주의 자실체를 열수, 주정, 메탄올의 용매를 이용하여 추출하였고, 용매별로 추출된 균상재배 양송이 버섯류의 아질산염 소거능(nitrite-scavenging effect)은 Gray등의 방법으로 520nm에서 흡광도를 측정하여 잔존하는 아질산염량을 구했으며, 그 결과 열수 추출물에서는 ASI 1163 균주가 46%, 주정 추출물에서는 ASI 1033이 28%, 메탄올 추출물에서는 ASI 1328이 57%로 가장 높았다. 각종 추출물은 양성대조구인 Ascorbic acid보다 낮은 값을 보였으나, 메탄올 추출물 중에서는 양성대조구인 BHA보다 높은 소거능을 보이는 것도 있었다.
나고야의정서가 발효(2014.10.12.)되면서 유전자원의 접근과 이익공유의 실현에 대한 관심이 증대되고 있다. 생물자원을 활용하여 발생하는 이익은 자원보유국과 공유하게 됨으로써 외국의 생명자원을 이용하는 의약, 화장품, 식품 등 국내 바이오산업계의 추가부담이 5,000억원/년으로 예상되고 있다. 따라서 국내 바이오산업의 피해를 최소화하고 나아가 경쟁력을 강화가기 위해서는 일차적으로 국내에서 자생하는 생물자원의 확보가 중요하며, 특히 보유한 유전자원의 활용을 위해서는 정확한 종 동정이 우선적으로 이루어져야 한다. 버섯자원의 종은 그동안 형태분류에 의해 주로 동정되었으나, 최근 생명공학의 발전으로 분자생물학적인 동정이 중요해 지고 있다. 그러나 분자생물학적인 방법만으로 정확한 종 동정이 어려운 실정이다. 국내에서 주로 재배되고 있는 느타리속에는 750여개의 종이 Index Fungorum database에 등록되어 있으며, 분자생물학적인 분류체계 연구에 사용되는 종은 20여개 내외에 불과한 실정이다. 핵심버섯자원을 확보하기 위해 농촌진흥청 버섯과에서 보유하고 있는 느타리버섯류 자원의 ITS 염기서열을 분석하고 기존에 보고되어 있는 느타리버섯류 염기서열과의 비교분석을 통해 보유자원의 동(species)을 동정하고 나아가 느타리버섯류의 분자생물학적인 분류체계의 확립을 위한 기초자료를 확보하고자 한다.
산업화의 영향으로 에너지 수요 증가에 따라 석탄수요의 증가 및 산업부산물인 재(Ash)의 발생량 또한 급증하는 추세이며, 재(Ash)의 재활용량은 지속적으로 증가하고 있으나 재활용에 의한 수익은 점차 감소하고 있어 재(Ash)의 재활용 부가가치가 점점 낮아지고 있는 실정이다. 본 연구는 산업부산물인 슬러지와 비산재 혼합에 따른 조경골재 생산을 하고자 하며, 하수슬러지 20~25%, 비산재 30~35%과 첨가제로서 물유리 및 알칼리제를 혼합한 후 소성온도 700~1000℃에서 1시간 동안 반응시켜 제조하여 화산석 대체의 조경골재 사용을 위한 가능성 연구를 하고자 한다. 소성시킨 멀칭용 조경재 제조 후 성분분석을 해본 결과 Si 성분이 20.77%으로 가장 많이 함유되어 있는 물질로 나타났으며 조경재의 구조에 영향을 미치는 Al, Ca, Fe 등의 원소로 구성되어 있는 것으로 나타났다. 주사 전자현미경(SEM)분석을 한 결과 다공성이 발달된 구조가 형성되어 토양에 통기성을 높일 수 있는 구조로 발달되어져 있음을 확인할 수 있었으며, 적정 배합비 및 소성온도 등의 특성을 보다 연구하여 화산석과 유사한 조건의 특성을 함유한 멀칭용 조경재를 제조할 수 있을 것으로 판단된다. 슬러지와 비산재의 혼합을 통한 조경골재 제조에 따른 결론은 폐자원을 활용하여 다양한 분야에서의 재활용 가능성을 높여줄 수 있을 것으로 사료되며, 이에 따른 기업 간의 협력을 통해 자원화 네트워크를 구축할 수 있는 방법을 통한 산업부산물의 다용도화가 가능하다.
에너지의 90%이상을 수입에 의존하면서도 낮은 에너지 효율성과 에너지 다소비 산업위주의 경제구조를 갖고 있는 우리나라에서는 산업경쟁력 확보 및 대응을 위하여 에너지 효율을 향상시키고 에너지의 회수 및 재이용률의 증대가 절실하다. 또한 세계 경제가 향후 완만하게 회복되는 경우 석유, 가스 등 에너지원에 대한 가격은 지속적으로 상승할 전망이다. 지구온난화의 주범물질인 CO2 감축을 위해서는 미활용 폐열에 대한 이용이 절실히 요구되고 있는 실정이다. 이를 해결하기 위하여 독일, 일본, 미국에서는 이미 폐열 이용을 위한 열택배 기술개발이 이루어져 보급이 점차 확대되고 있다. 이에 따라 국내에서도 산업체에서 발생하는 미활용 폐열을 활용하여 석유, 가스 등의 에너지원을 절약하는 기술개발 및 사업화가 시급히 요구되고 있다. 특히 충남 당진지역의 경우 에너지 다소비 업체가 다수이며, 동시에 폐열을 다량으로 발생하고 있는 공장과 발전소 등이 다수있으며, 산업단지 내 중소기업과 산업단지에서 불과 20여km 이내로 떨어진 곳에서 개별난방을 하고 있는 아파트 단지, 온수 및 냉난방을 필요로 하는 주택단지 및 비닐하우스 농가, 화훼단지, 공공시설 등 열을 필요로 하는 열수요처가 많은 편이다. 이 같이 많은 에너지를 필요로 하고, 에너지 사용 후 많은 열을 방출하고, 이 폐열을 활용하고자 하는 지역적인 특성을 감안하면 열택배 사업에 대한 기술개발이 성공하면 산업단지 내 미활용 폐열을 전술하였던 열수요처로 운송하여 전기난방, 열풍생산, 온수생산, 냉난방 등에 적용하여 에너지를 획기적으로 절감할 수 있을 것이다. 열택배 기술은 산업시설에서 발생하는 중・저온 및 고온의 폐열을 활용하기 위한 기술로서 공장이나 소각로 등에서 발생하는 폐열을 축열하고 사용 목적지까지 운반하여 방열하는 기술이다. 또한, 열택배 기술은 기존의 열수송 기술의 근본적 문제점인 열수요처와의 거리가 먼 경우 발생하는 배관매설시의 고비용 발생 및 관리에 대한 부담 등에 관한 문제를 해결할 수 있는 기술이다.
전국의 2012년도 가축분뇨 발생량은 <표 1>에서 보듯이 46,489천톤이 발생하였다. 2012년도부터 가축분뇨의 해양투기가 전면금지 되었기 때문에 전량 육상처리하고 있으며, 이 중 퇴비로 처리되는 량이 81%로 가장 많이 차지한다. 한편, 충남 보령시는 가축농가가 차지하는 비율이 높은 편이며 가축사육시설 및 가축분뇨 처리과정에서 발생하는 악취로 인한 민원발생이 많은 지역이다. 가축분뇨는 2,055톤/일 발생하며 이중 퇴비로 처리되는 양이 68%이다. 가축분뇨는 2012년부터 해양투기가 전면금지 됨에 따라 전량 육상 처리되고 있으나, 가축농가의 분뇨처리시설용량 부족으로 및 가축분뇨 부적정 처리로 인한 악취발생, 환경오염 문제가 발생하고 있다. 가축분뇨를 자원화하는 것은 유용한 자원으로 소득에 기여할 뿐만 아니라 폐기물을 발생시키지 않아 환경을 보전하기도 한다. 최근 국내의 가축 사육 규모가 커짐에 따라 가축분뇨의 처리문제와 악취로 인한 민원이 증가하여 사화문제화 되고 있다. 악취민원은 2003년 이후 연평균 14.5% 증가하고 있고, 축산관련 악취는 약 7%로 해마다 지속적인 증가를 보이고 있다(환경부, 2007). 축종별로 보면 양돈 관련 악취 민원이 약 54%로 많은 부분을 차지하고 있다. 퇴비는 음식물쓰레기, 축산분뇨 등을 발효 및 부숙시켜서 농작물, 원예, 임야에 시비하는 것이다. 퇴비 생산시에는 음식물쓰레기 및 축산분뇨와 같은 퇴비대상물이 수분이 85%정도로 높아 부패하기 쉽기 때문에 퇴비에 적합하도록 수분조절재(톱밥, 왕겨등)를 사용하여 수분을 60~65%로 조절하여야 한다. 퇴비는 퇴비대상물이 함유한 유기물을 분해 안정화시켜서 토양미생물의 활성을 도와주는 역할을 하며, 퇴비 조건이 맞지 않을 경우 발효가 잘 일어나지 않거나 악취가 많이 발생되기도 한다. 이러한 경우 퇴비의 발효를 촉진시키기 위하여 발효촉진재를 첨가하여 퇴비화가 원활하게 진행하게 한다. 시판되고 있는 퇴비 발효제는 대부분 미생물제로써 토양이나 유용한 미생물을 추출, 배양하여 주로 액상으로 공급하고 있다. 개발된 기술은 퇴비 발효촉진재로써 미생물제가 아닌 무기물로 구성된 미생물활성재이다. 본 퇴비 발효촉진재는 퇴비대상물(가축분뇨+톱밥)에 5%정도 혼합하면 악취발생이 거의 없고 고온이 장기간 지속되어 완숙퇴비가 되게 만들어주는 기능을 가지고 있다. 구체적으로는 발효촉진재의 성분에 의해 폴리실리케이트 망목을 형성하여 악취물질을 흡착하는 기능이 있어 악취를 70%정도 억제하는 기능, 친수성 수화물질의 수화반응 및 경화반응에 의한 수분증발 기능, 발효촉진제는 약알칼리성으로 퇴비를 시비할 경우 산성토양을 중화시키는 기능, 초기발열 및 고온균 활성화로 퇴비기간을 기존의 50일에서 40일로 약20% 단축시키는 기능, 고온균 및 방선균 활성화 및 고온 장기지속 등으로 완숙퇴비를 만들어 주는 기능을 가지고 있다. 따라서 발효촉진제가 비록 분말이지만 단립화기능이 있으므로 첨가량 만큼 톱밥 사용량을 줄일 수 있다. 발효촉진재의 용도는 퇴비 첨가물로써, 가축분뇨 및 음식물쓰레기 등을 퇴비화 할 경우, 가축분뇨 및 음식물 쓰레기에 톱밥을 혼합 한 후 추가로 발효촉진재를 무게비로 5%정도 혼합해 주면 된다. 따라서, 본 사업을 통해, 화력발전소에서 발생하는 바텀애쉬 및 공장의 폐흡착제는 충 발효촉진재의 대체원료로의 사용함으로써, 바텀애쉬 및 폐흡착제의 재활용 수요처를 확보함과 아울러 부산물처리 비용의 절감효과를 기대할 수 있다. 아울러, 생산업체에서는 발효촉진재의 대체원료 활용을 통해 안정적인 수급과 원가절감 효과를 기대 할 수 있다. 폐기물 자원화 네트위크 구축사업으로 생산되는 발효촉진제는 가축농가 퇴비장에 지원하여 악취문제를 근원적으로 해결함으로써 지역 편익을 증진시킬 수 있는 사업이다.
국내에서 하천의 제방을 보호하는데 중점을 둔 공법으로는 콘크리트 호안 블록을 설치하는 공법과 콘크리트 매트공법을 들 수 있으며, 식물의 생육에 중점을 둔 공법으로는 양재천에 도입되었던 유럽의 여러 공법들을 들수 있다. 또한 최근에는 식물의 식재를 위해 구멍이 뚫린 콘크리트 블록(유공블록)을 설치하는 방법들이 시도되고 있다. 제방의 보호에 중점을 둔 공법들의 경우, 특히 콘크리트 매트공법은 제방을 튼튼하게 보호하는 방법으로는 가장 좋은 효과를 보일 수 있으나 전혀 식생이 정착할 수 없는 비 환경적인 방법이며, 콘크리트 호안블록을 시공하는 경우는 블록의 사이에 잡초가 생육하기는 하지만 일부분에 한정되며, 블록의 틈새에서만 물과 공기의 공급이 가능하므로 제방의 전체에 식물이 생육하거나 미생물, 소동물의 생육이 불가능 하므로 생태 친화적인 공법이 될 수 없다. 국내에 도입된 외국의 여러 공법들은 식생이 정착되는 데는 유리한 점이 있지만 제방의 안전성을 확보하는데는 부족한 점이 많다. 특히 홍수기에 많은 물이 일시에 흐르는 우리나라의 하천 환경특성에는 적합하지 않다고 판단된다. 식물의 식재를 위해 블록의 일부를 제거한 형태의 콘크리트 블록을 시공한 경우 흐르는 물에 의하여 구멍에 채워진 토양이 유실되어 질뿐만 아니라 식물도 함께 유실되므로 블록의 이면에 두꺼운 부직포를 설치하게 되므로, 실질적으로 제방의 토양과는 완전히 분리되어 식물이 생육하므로 쉽게 식물이 유실될 수 있다. 일반적으로 콘크리트에서 식물을 재배할 경우, 식물이 자라지 못하는 이유는 콘크리트 자체가 높은 알칼리성을 나타내며, 뿌리 공간과 발아 공간이 없고 투수성 및 보수성이 낮으며, 식물에 필요한 영양분이 없기 때문이다. 따라서 식물을 생육시키기 위해서는 식생콘크리트의 pH을 줄이고, 공극률을 확보하여 뿌리 및 발아공간을 제공해 주어야 한다. pH을 줄이고, 공극률을 확보하기 위하여 고로슬래그 시멘트를 사용하여 옥상녹화블록을 연구 및 상용화한 사례가 있다. 즉, 잔골재를 사용하지 않고 굵은골재만을 사용하여 식물의 뿌리와 물 공기가 통과할 수 있는 연속공극을 형성하고, 이 연속공극을 통하여 식물의 뿌리가 지반까지 도달하여 블록과 지반과의 일체화로 구조적 안정성을 확보하였다. 이러한 옥상녹화블록 경험을 토대로 제철에서 발생하는 서냉 고로슬래그 골재를 생태하천복원용 식생블록골재 적용성을 검토함으로써 제철회사는 서냉 고로슬래그 골재의 수요처를 확보하는 동시에 폐기물 처리 비용의 절감 효과를 기대할 수 있다. 또한, 식생블록 생산업체는 저가의 골재 활용을 통해 안정적인 골재 수급과 원가절감 효과를 기대할 수 있고, 최종 성과활용 기관은 저가의 제품을 구입하여 공사비용을 절감할 수 있음으로써, 공급처, 수요처, 활용처 모든 참여업체가 WIN-WIN 할 수 있는 네트워크를 구축하는 사업이다.
최근 들어 건축물의 규모 및 범위가 확대되어 각 구조물 부재의 크기가 커짐에 따라 건조수축 균열 발생확률이 증가하는 한편 콘크리트 제조용 원재료의 품질은 열악해지고 있는 상황이고, 레미콘의 경우도 작업성의 향상을 위해 단위수량을 증가시키는 등 여러 가지 원인으로 건조수축 균열발생에 의한 품질저하 문제가 자주 대두되고 있다. 이러한 건조수축을 개선하기 위해서는 경화 시에 적당한 팽창성과 chemical prestress를 부여하여 수축량을 보상해 주는 방법이 있는데 이러한 팽창반응을 일으키는 물질로는 칼슘설포알루미네이트(CalciumSulfoAluminate, 3CaO·3Al2O3·CaSO4)가 매우 효과적이며 이는 수화반응으로 에트린가이트(Ettringite, C3A·CaSO4·32H2O)를 생성하여 시멘트 몰탈 및 콘크리트를 팽창시키고 미세공극을 충진 함으로서 이의 첨가로 시멘트 콘크리트에 조강성, 팽창성, 고강도성 등의 우수한 특성을 부여 할 수 있으며, CSA클링커의 합성에는 석회질 원료, 알루미나질 원료 및 석고가 필요한데 이들은 모두 산업 부산물 및 폐기물로 대체 가능한 것이다. CSA는 1970년대 일본의 電氣化學工業에 의해 개발되어, 이후 중국의 Beijing Polar Bear Materials 등 몇몇 기업에 의해 상업생산이 이루어지고 있다. 한국의 경우, 특수시멘트 수요의 증가로 개발요구가 늘어나면서 1990년대 이후 석회석, 굴패각, 명반석, 폐촉매 등을 활용한 몇 차례의 CSA 개발이 이루어졌지만 원재료 조달, 운반비용, 소성 등 제조비용의 문제로 일본 및 중국업체 제품에 경쟁력을 갖추기 어려워, 현재 상업적인 국내 생산은 이루어지지 않고 있는 실정이다. CSA는 토목・건축용 재료의 속경, 조강, 팽창성 물성 발현제품의 용도로 다양하게 사용될 수 있으나 국내생산의 미비로 대부분 중국산으로 수입되고 있는 실정이다. 중국산 클링커의 연간 수입규모는 10,000톤 내외이며, 수입액은 30 ~ 35억원 정도이다. 건설재료 시장에서 CSA가 차지하는 시장규모는 1% 미만으로 경기변동에 따른 영향이 적은 편이다. 그러나 교량, 터널 등 고난도의 공사가 늘어나고 있고 그동안 높은 가격 때문에 사용량이 제한되어 왔음을 감안할 경우 잠재수요는 상당할 것으로 판단된다. 본 CSA 생산기술은 정유공장의 탈황석고와 알루미늄 주물업체의 폐알미늄 드로스를 주 원료로 사용함으로서, 기존의 석회석/보크 사이트 등 천연원료를 사용하는 수입산 제품에 비해 가격경쟁력이 우수할 뿐 아니라 산업부산물을 재활용함으로서 경제적・환경적으로도 큰 이점이 있다. 다만, 원재료 혼합공정의 안정화와 재료의 혼합/교반과정에서 발생하는 악취, 발열, 분진 등의 처리 등의 문제가 있어 이를 해결해야 사업화가 가능할 것이다. 최종적으로 본 사업을 바탕으로 현재 전량 수입에 의존하고 있는 CSA를 국산 제품으로 대체하고 장기적으로는 일본/중국 등에 상품 또는 기술 수출을 계획 중에 있다. 또한 품질향상 및 이를 발판으로 시멘트 혼화재로서의 γ-C2S와 같은 신제품개발을 목표로 하고 국내건설 산업에 이바지하고자 하는 것이다.
충청남도 생태산업단지 지정 단지는 당진시, 서산시, 아산시, 천안시 4개 기초지방자치단체에서 아산(고대, 부곡)국가산업단지, 현대제철일반산업단지, 서산・대죽・대산일반산업단지, 천안제2, 3산업단지, 탕정디스플레이시티1산업단지, 인주일반산업단지 등 총 9곳 산업단지가 지정되었다. 이들 산업단지에서 배출되는 폐기물 발생량은 연간 총 5,871천톤에 이르며, 재활용, 매립, 소각, 위탁처리 등으로 처리되고 있는 실정이다. 국내외적으로 환경오염배출 저감에 적극 참여하는 추세이며, 폐기물을 저감할 경우 온실가스 배출량을 감소시키고 한편 탄소 배출권을 확보하고, 경제적 이익 증대 및 지역주민 민원을 최소화하는 잇점이 있다. 생태산업단지(Eco-Industrial Park, EIP)는 먹이사슬로 공생하는 자연 생태계의 원리를 산업에 적용하는 개념으로 기업과 기업, 공장과 공장을 서로 연결시켜 생산 공정에서 배출되는 부산물, 폐기물, 폐에너지 등을 다른 기업이나 공장의 원료 또는 에너지원으로 쓸 수 있도록 재자원화하여 산업단지내의 부산물이나 오염물질을 최소화하는 자원순환형 산업단지 구축, 오염물 무배출(Zero-Emission)을 지향하는 데 목적이 있다. 이에 본 연구는 충청남도 지역(당진시, 서산시, 아산시, 천안시)의 산업단지를 대상으로 배출되었던 폐스팀, 폐열을 에너지원으로 매립 및 소각되었던 폐기물을 연료 또는 제품화하거나, 재활용 되던 폐기물을 고부가가치로 재탄생 할 수 있도록 생태산업단지 네트워크 구축 연구를 실시하였다. 충청남도 생태산업단지 구축사업은 Table 1에 나타내었으며, 폐자원, 폐열 등 다양한 부산물에 대해 사업을 발굴하고 진행하고 있다.
생태산업단지(Eco-Industrial Park, EIP)는 아직까지 생소한 개념이나 간략히 정의한다면 먹이사슬로 공생하는 자연 생태계의 원리를 산업에 적용하는 개념으로 기업과 기업, 공장과 공장을 서로 연결시켜 생산 공정에서 배출되는 부산물, 폐기물, 폐에너지 등을 다른 기업이나 공장의 원료 또는 에너지원으로 쓸 수 있도록 재자원화하여 산업단지내의 부산물이나 오염물질을 최소화하는 “친환경 산업단지”라 할 수 있다. 생태산업단지 구축 사업의 목표는 자원 순환형 산업단지 구축, 오염물 무배출(Zero-Emission)을 지향하는 산업단지 구축, 지역 사회와 공존하는 산업단지 구축, 지속가능한 한국형 생태산업단지 구축하는데 그 목적이 있다. 이에 본 연구는 충청남도 지역(당진시, 서산시, 아산시, 천안시)의 산업단지를 대상으로 산업단지 현황 및 폐기물 발생량 조사를 통해 생태산업단지 구축을 위한 타당성 평가를 실시하였다. 위의 행정 구역에 포함된 주요 산업단지는 9개 산업단지로 다양한 형태의 주요 업종이 입주하여 있는 것으로 나타났다. 당진시의 2개 산업단지는 약 542만톤/년의 폐기물이 발생되는데 그 이유는 철강 업종이 많이 입주하여 있다보니 다른 지역에 비해 월등히 발생량이 높은 것으로 나타났으며 그중 450만톤이 광재로 나타났다. 아산시 및 서산시는 유기성 및 무기성 폐수오니가 각각 18만톤 킹 2.8만톤으로 가장 많은 발생량을 보였으며 천안시는 무기성 폐수오니가 1.5만톤 발생되는 것으로 조사되었다. 통상적으로 산업단지에서 발생하는 폐기물의 재활용율은 70% 이상으로 조사 되었으나 단순 중간처리를 하는 업체들이 많아 실제적인 재활용율은 70%에 미치지 못할 것으로 판단되었다. 이에 본 사업인 생태산업단지 구축 사업을 통해 자원 순환 네트워트 구축을 통해 자원 재활용 및 오염물 배출 저감 효과를 저감 시킬 수 있을 것으로 조사되었다.