검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2,010

        81.
        2023.05 구독 인증기관·개인회원 무료
        The decommissioning of the Nuclear Power Plant (NPP) is a long-term project of more than 15 years and will be carried out as a project, which will require project management skills accordingly. The risk of decommissioning project is a combination of many factors such as the decommissioning plan, the matters licensed by the regulatory agency, the design and implementation of dismantling, the dismantling plan and organization, and stakeholders. There will be some difficulties in risk management because key assumptions about many factors and the contents of major risks should be well considered. Risk management typically performs a series of processes ranging from identification and analysis to evaluation. In order to analyze and evaluate risks here, identification of potential risks is the first step, and in order to reasonably select potential risks, various factors mentioned should be considered. Therefore, the purpose of this study is to identify possible risks that should be considered for the decommissioning project in various aspects. The risk of the decommissioning project can be defined using the hazard keyword, and the risk family presented in the IAEA safety series can also be referred. It would be better to approach the radiological or non-radiological risks that may occur in the dismantling work with the hazard keyword, and if the characteristics of the decommissioning project are reflected, it would be a good idea to approach it on a risk family basis. There are 10 top risks in the risk family, 25 risks at the level 2 and 61 risks at the level 3 are presented. It may be complex to consider these hazards and risks recommended as risk families at the same time, so using the results of safety evaluation as input data for risk identification can be a reasonable approach. Therefore, this study intended to derive the possible risks of the decommissioning project based on the risk family structure. At this point, the reflection of the safety assessment results was intended to be materialized by considering the hazards checklist. As a result, this study defined and example of 38 possible risks for the decommissioning project, considering the 10 top risk family and lower level risk categories. This result is not finalized, and it will be necessary to further strengthened through expert workshops or HAZOP in the future.
        82.
        2023.05 구독 인증기관·개인회원 무료
        After permanent shutdown, contamination existing in nuclear facilities must be removed according to decontamination and dismantling procedures to achieve the target end state. In Korea, Korea Research Reactor (KRR) Units 1, 2 are being decommissioned, and Kori Unit 1 is in the process of reviewing the final decommissioning plan for the start of decommissioning. In order to complete decommissioning of nuclear facilities, it is necessary to satisfy the dose criteria according to the residual radioactivity remaining in the site and buildings. In the United States, which has a lot of experience in decommissioning, Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) is used as a procedure for measuring and analyzing residual radioactivity. In MARSSIM, survey units are classified according to the level of contamination, and the radiation survey procedure and effort can be determined according to the survey unit level. After the radiological analysis and statistical verification of the survey unit, it is decided whether to release the site. At this time, the geographical area to be used as the background level is called the reference area. Therefore, selection of an appropriate reference area is important for accurate residual radioactivity analysis and for the release of the site. In this study, reference area evaluation cases and domestic decommissioning procedures were analyzed to derive considerations for selecting an appropriate reference area. For example, Zion NPP in the US selected a place outside the boundary of the restricted area unaffected by nuclear power plant operation as a reference area by referring to the meteorological monitoring report. Among Korea’s decommissioning procedures, the appropriateness of the reference area can be confirmed through the final status report submitted upon completion of decommissioning. However, since the selection and application of the reference area needs to be reflected during decommissioning, relevant information must be updated through periodic communication between operator and regulatory agency. The results of this study will be used as considerations for selecting a reference area.
        83.
        2023.05 구독 인증기관·개인회원 무료
        The decommissioning of Korea’s nuclear power facilities is expected to take place starting with the Kori Unit 1 followed by the Wolsong Unit 1. In Korea, since there is no experience of decommissioning, considerations of site selection for the waste treatment facilities and reasonable selection methods will be needed. Only when factors to be considered for construction are properly selected and their effects are properly analyzed, it will be possible to operate a treatment facility suitable for future decommissioning projects. Therefore, this study aims to derive factors to be considered for the site selection of treatment facilities and present a reasonable selection methodology through evaluation of these factors. In order to select a site for waste treatment facilities, three virtual locations were applied in this study: warehouse 1 to warehouse 3. Such a virtual warehouse could be regarded as a site for construction warehouses, material warehouses, annexed building sites, and parking lots in nuclear facilities. If the selection of preliminary sites was made in the draft, then it is necessary to select the influencing factors for these sites. The site of the treatment facility shall be suitable for the transfer of the waste from the place where the dismantling waste is generated to the treatment facility. In addition, in order for construction to take place, interference with existing facilities and safety should not be affected, and it should not be complicated or narrow during construction. Considering the foundation and accessibility, the construction of the facility should be economical, and the final dismantling of the facility should also be easy. In order to determine one final preferred plan with three hypothetical locations and five influencing factors, there will be complex aspects and it will be difficult to maintain consistency as the evaluation between each factor progresses. Therefore, we introduce the Analytic Hierarchical Process (AHP) methodology to perform pairwise comparison between factors to derive an optimal plan. One optimal plan was selected by evaluating the three virtual places and five factors of consideration presented in this study. Given the complexity and consistency of multiple influencing factors present and prioritizing them, AHP tools help users make decisions easier by providing simple and useful features. Above all, it will be most important to secure sufficient grounds for pairwise comparison between influencing factors and conduct an evaluation based on this.
        84.
        2023.05 구독 인증기관·개인회원 무료
        Kori Unit 1 is about 600MW Pressurized Light Water Reactor as WH type. KHNP got an approval for construction and operation of Kori unit 1 on May 31, 1972 and started commercial operation from Apr. 29, 1987. And then, it was decided to permanently suspend it on Jun. 18, 2017 after 40 years of commercial operation. The Nuclear Safety Act stipulates that if a commercial nuclear power plant is permanently suspended, the utility must submit a Final Decommissioning Plan (FDP) within 5 years. So, KHNP, the utility, developed a FDP for Kori Unit 1 and submitted it to the government in May 2021. In South Korea, the FDP is to be prepared in accordance with the relevant notices and consists of 11 major chapters such as (1) Decommissioning Plan Overview, (2) Project management, (3) Status of Site and Environmental, (4) Decommissioning Strategies and Method, (5) Ease of Decom. Design characteristic, (6) Safety Analysis, (7) Radiation Protection, (8) Decontamination and Dismantling, (9) Radioactive Waste Management, (10) Environmental Impact Analysis, (11) Fire Protection and (12, 13) Etc., References and Glossary. KHNP has prepared a strategy and system consisting of three areas such as R&D, Engineering and licensing document development to prepare the final decommissioning plan for Kori Unit 1. The promotion system for the preparation of the FDP for Kori Unit 1 is composed of Engineering (HAS Characterization, Dismantling Safety Evaluation, Radiological Environmental Report, Radioactive Waste Treatment and Facility Construction), R&D(KHNP R&D Results such as Process/Work Package /Cost Estimation, Safety Analysis, Contamination and Exposure, Guide for Detailed Characteristic, Site Safety Analysis, RV & RVI Dismantling Process, etc.), Overseas case lessons learned(Taiwan unit 1 NPP FDP and Spain Zorita NPP FDP analysis) and Development of Licensing Document. KHNP completed the initial completion of the Final Decommissioning Plan for Kori Unit 1 in March 2020 and carried out collecting residents’ opinions through public hearings. And then, KHNP supplemented the results of the residents’ opinions and applied for license to the Nuclear Safety and Security Commission in May, 2021. Now, KHNP are responding to the FDP licensing review.
        85.
        2023.05 구독 인증기관·개인회원 무료
        Laser cutting technology capable of remote cutting is being developed to reduce radiation exposure to workers and minimize secondary waste generation when dismantling highly polluted nuclear power plant facilities (reactors, pressurizers, steam generators, coolant pumps, etc.). Laser cutting proceeds in air or water, and at this time, secondary products containing radioactive materials are inevitably generated. In air cutting, dust and aerosol are generated, and in underwater cutting, aerosol, water vapor, dispersed particles (colloid, suspension), sediment (dross, sediment), and radioactive waste liquid are generated. Dispersed particles float in the form of fine particles in water, increasing the turbidity of water as cutting progresses, hindering work, and aerosols contain micrometer-sized particles together with water vapor, which can threaten the safety of workers. Particles dispersed in water and aerosol are within 10% of the mass ratio among secondary products, but the volume they occupy is very large, which can have a significant impact on the environment as well as a burden on treatment capacity. Various characterization methods are being developed to diagnose the generation mechanism and physical and chemical properties of laser cutting secondary products in real time and to secure technologies for collecting and removing dispersed particles and aerosols in water. This study introduces a real-time laser cutting secondary product characteristic evaluation method that can identify the key mechanisms of secondary product generation by analyzing the plasma formation process on laser cutting surface and behavior of aerosol, underwater dispersed particles produced by secondary products, as well as physical and chemical properties in real time with various measurement technologies such as Optical Emission Spectrometer (OES), Particle Size Analyzer (PSA), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), Transmission electron microscopy (TEM) and Inductively Coupled Plasma Time-of-Flight Mass Spectrometry (ICP-TOF-MS).
        86.
        2023.05 구독 인증기관·개인회원 무료
        Korea currently has two permanent shutdown Nuclear Power Plants (NPPs), and the decommissioning project is expected to begin soon, starting with the first commercial NPP. The decommissioning project will eventually be the disposal of radioactive waste in the final stage of the work, and in that respect, proper tracking and history management should be well established in the management of waste. This is in line with the guidelines that regulatory agencies should also properly manage radioactive waste. Therefore, this study intends to examine the factors that should be considered in terms of tracking and management of radioactive waste in decommissioning nuclear facilities. The starting and final point of tracking radioactive waste generated during decommissioning is the physical inventory of the current as-is state and the final container. In this respect, the tracking of waste starts from the beginning of the dismantling operation. Thus, at the stage of approval of the decommissioning work, it may begin with an ID scheme, such as the functional location in operation for the target System, Structure, and Components (SSCs). As the dismantling work progresses, SSCs will be classified by nature and radiological level, which will be placed in containers in small packaging units. At this time, the small package should be given an ID. After that, the dismantling work leads to the treatment of waste, which involves a series of operations such as cutting, decomposition, melting, and decontamination. Each step in which these tasks are performed will be placed in a container, and ID assignment is also required. Until now, the small packaging container is for transfer after each treatment, and it is placed in the storage container in the final stage, at which time the storage container also gives a unique ID. Considerations for follow-up management were reviewed assuming solid waste, which is the majority of dismantled radioactive waste considered in this study. The ID system should be prepared from the start of the dismantling work, ID generation of the small transporting container and ID generation of the final disposal container during the intermediate waste treatment process, and each ID generation of the previous stage should be linked to each generation stage. In addition, each ID must be generated, and the definition of the grant scheme and attributes is required.
        87.
        2023.05 구독 인증기관·개인회원 무료
        For the deep geological repository, engineering barrier system (EBS) is installed to restrict a release of radionuclide, groundwater infiltration, and unintentional human intrusion. Bentonite, mainly used as buffer and backfill materials, is composed of smectite and accessory minerals (e.g. salts, silica). During the post-closure phase, accessory minerals of bentonite may be redistributed through dissolution and precipitation due to thermal-hydraulic gradient formed by decay heat of spent nuclear fuel and groundwater inflow. It should be considered important since this cause canister corrosion and bentonite cementation, which consequently affect a performance of EBS. Accordingly, in this study, we first reviewed the analyses for the phenomenon carried out as part of construction permit and/or operating license applications in Sweden and Finland, and then summarized the prerequisite necessary to apply to the domestic disposal facility in the future. In previous studies in Sweden (SKB) and Finland (POSIVA), the accessory mineral alteration for the post-closure period was evaluated using TOUGHREACT, a kind of thermal-hydro-geochemical code. As a result of both analyses, it was found that anhydrite and calcite were precipitated at the canister surface, but the amount of calcite precipitate was insignificant. In addition, it was observed that precipitate of silica was negligible in POSIVA and there was a change in bentonite porosity due to precipitation of salts in SKB. Under the deep disposal conditions, the alteration of accessory minerals may have a meaningful influence on performance of the canister and buffer. However, for the backfill and closure, this is expected to be insignificant in that the thermal-hydraulic gradient inducing the alteration is low. As a result, for the performance assessment of domestic disposal facility, it is confirmed that a study on the alteration of accessory minerals in buffer bentonite is first required. However, in the study, the following data should reflect the domestic-specific characteristics: (a) detailed geometry of canister and buffer, (b) thermal and physical properties of canister, bentonite and host-rock in the disposal site, (c) geochemical parameters of bentonite, (d) initial composition of minerals and porewater in bentonite, (e) groundwater composition, and (f) decay heat of spent nuclear fuel in canister. It is presumed that insights from case studies for the accessory mineral alteration could be directly applied to the design and performance assessment of EBS, provided that input data specific to the domestic disposal facility is prepared for the assessment required.
        88.
        2023.05 구독 인증기관·개인회원 무료
        A variety of microorganisms are contained in the groundwater and surrounding environment at the depth of a deep geological repository, and could adversely affect the integrity and/or safety of the facility under certain thermal, hydraulic and chemical conditions. In particular, microbial activity (in the buffer and backfill) around the canister can cause corrosion of the canister through sulfide production by sulfate-reducing bacteria (SRB), and subsequently promote radionuclide release through the corroded part. Namely, this phenomenon is important in a perspective of performance assessment since it will have an impact on the post-closure exposure dose in the biosphere by accelerating radionuclide leakage into the near-field due to deterioration of the canister integrity In Finland, the performance assessment on microbial activity in buffer, backfill, and plug was performed for the licensing. However, in Korea, researches relevant to microbial activity are only in the early stage as of now. Accordingly, in this study, we draw initial considerations for the performance assessment on the phenomenon in the domestic facility based on review results for the methodology carried out as part of operating license application (i.e. SC-OLA). Studies on the performance assessment of microbial activity in Finland were mainly performed: (a) to investigate complex interactions among microorganisms in the repository by analyzing both indigenous and exogenous microorganisms through drilling, geological and geochemical analysis, (b) to identify microbial interactions at the buffer, backfill, and host rock interface for specific microorganisms that may affect activity of other microorganisms and integrity of the repository, (c) to analyze canister corrosion caused by microbial activity, particularly sulfide production by SRB, and (d) to characterize microbial illitization of montmorillonite that could affect permeability, hydraulic conductivity, and structural integrity of the repository. From reviewing studies above, it is judged that studies labelled as (b) through (d) are applicable to the performance assessment of microbial activity for the domestic facility regardless of specific conditions in Korea. However, for study labelled as (a), the following data on reflecting domestic conditions should be additionally obtained: (1) radionuclide inventory and temperature in spent nuclear fuel, (2) swelling pressure and organic carbon content of bentonite, and (3) size, shape, and gas composition of pores in bentonite. Results of this study could be directly applied to the design and performance assessment for buffer and backfill components, provided that input data specific to the domestic disposal facility is prepared for the assessment required.
        89.
        2023.05 구독 인증기관·개인회원 무료
        Bentonite, a material mainly used in buffer and backfill of the engineering barrier system (EBS) that makes up the deep geological repository, is a porous material, thus porewater could be contained in it. The porewater components will be changed through ‘water exchange’ with groundwater as time passes after emplacement of subsystems containing bentonite in the repository. ‘Water exchange’ is a phenomenon in which porewater and groundwater components are exchanged in the process of groundwater inflow into bentonite, which affects swelling property and radionuclide sorption of bentonite. Therefore, it is necessary to assess conformity with the performance target and safety function for bentonite. Accordingly, we reviewed how to handle the ‘water exchange’ phenomenon in the performance assessment conducted as part of the operating license application for the deep geological repository in Finland, and suggested studies and/or data required for the performance assessment of the domestic disposal facility on the basis of the results. In the previous assessment in Finland, after dividing the disposal site into a number of areas, reference and bounding groundwaters were defined considering various parameters by depth and climate change (i.e. phase). Subsequently, after defining reference and bounding porewaters in consideration of water exchange with porewater for each groundwater type, the swelling and radionuclides sorption of bentonite were assessed through analyzing components of the reference porewater. From the Finnish case, it is confirmed that the following are important from the perspective of water exchange: (a) definition of reference porewater, and (b) variations in cation concentration and cation exchange capacity (CEC) in porewater. For applying items above to the domestic disposal facility, the site-specific parameters should be reflected for the following: structure of the bedrock, groundwater composition, and initial components of bentonite selected. In addition, studies on the following should be required for identifying properties of the domestic disposal site: (1) variations in groundwater composition by subsurface depth, (2) variations in groundwater properties by time frame, and (3) investigation on the bedrock structure, and (4) survey on initial composition of porewater in selected bentonite The results of this study are presumed to be directly applied to the design and performance assessment for buffer and backfill materials, which are important components that make up the domestic disposal facility, given the site-specific data.
        90.
        2023.05 구독 인증기관·개인회원 무료
        In buffer, a main component of engineering barrier system (EBS) in the deep geological repository, mass loss is mainly caused by upheave and mechanical erosion. The former is a phenomenon that bentonite in the upper part of the buffer moves to the backfill region due to groundwater intake and swelling. And, the latter is a phenomenon that bentonite on the surface of the buffer moves to the backfill region due to groundwater flow at the interface with host rock as the buffer saturates. Buffer mass loss adversely affects the fulfilment of the safety function of the buffer that is to limit and retard radionuclide release in the event of canister failure. Accordingly, in this paper, we reviewed how to consider this phenomenon in the performance assessment for the operating license application in Finland, and tentatively summarized data required to conduct the analysis for the domestic facility based on the review results. Regarding buffer mass loss, the previous studies carried out in Finland are categorized as follows: 1) experiment on the amount of buffer upheave with groundwater inflow rate (before backfilling), 2) analysis for the amount of buffer upheave with groundwater inflow rate (after backfilling), 3) analysis of buffer erosion rate with groundwater inflow rate, 4) analysis for distribution of the groundwater inflow rate into the buffer for all deposition holes (using ConnectFlow modeling results), and 5) analysis of buffer mass loss with groundwater salinity. Finally, the buffer mass loss distribution table was derived from the results of 1) through 3) by combining with that of 4). Given these studies, the following will be required for the performance assessment for buffer mass loss in the domestic disposal facility: a) distribution table of buffer mass loss for combined interactions taking into account effect of 5) (i.e. 1), 2), 3), and 5) + 4)), and b) Threshold for buffer mass loss starting to negatively affect the fulfilment of the safety function of the buffer. Even though it is judged that the results of this study could be directly applied to developing the design concept of EBS and to conducting the performance assessment in the domestic disposal facility, it is essential to prepare a set of input data reflecting the site-specific design features (e.g. dimension, material used, site, etc.), which include saturation time and groundwater salinity.
        91.
        2023.05 구독 인증기관·개인회원 무료
        In the deep geological repository, a considerable quantity of cementitious materials is generally used for structural stability of subcomponents such as grout and concrete plug of disposition tunnel. Strong alkaline leachates (pH>13) are produced after cement is dissolved by groundwater inflow from bedrock. When the leachates are transported to bentonite porewater (e.g. buffer and backfill) and thereby water exchange occurs, the physical properties of bentonite such as swelling capacity and hydraulic conductivity are changed, which eventually affects the safety function and long-term stability of engineered barrier system (EBS). Thus, in this paper, we reviewed the performance assessment methodology for cement-bentonite interaction in the operating license application for the Finnish deep geological repository, and suggested what to prepare for the analysis on the domestic disposal facility. In Finland, thermal-hydraulic-chemical analysis for dissolution of montmorillonite by alkaline leachates resulting from cement degradation during the saturation of bentonite was carried out using PRECIP code. From this analysis, it was confirmed that effect on pH was considered to be more significant than that on temperature and bentonite saturation. As a result of this analysis, it was predicted that all primary minerals (including montmorillonite, quartz, and calcite) were dissolved and some secondary minerals (e.g. chalcedony and celadonite) was precipitated by alkaline cement leachates transported to the bentonite. In addition, it was shown that silica was preferentially released while the montmorillonite was dissolved, thus cementation of the bentonite was occurred. Through this phenomenon, the swelling capacity of bentonite is reduced and the hydraulic conductivity of bentonite is increased, which have a significant impact on the performance of the buffer and backfill. Considering this, study on spreading of alkaline leachates, which is a condition for dissolution of montmorillonite, is necessary for the performance assessment of the domestic deep geological repository. However, this requires the site-specific data for the following in the disposal site: (a) distribution in fractured bedrock and pore structure (e.g. porosity, pore size distribution and pore morphology) in the bedrock, (b) hydraulic gradient and salinity concentration of groundwater, and (c) flux and velocity of groundwater. Results of this study is considered to be directly utilized to the conceptual design and performance assessment of the deep geological repository in Korea, provided that additional data on microbiological properties of groundwater are obtained for the site selected.
        92.
        2023.05 구독 인증기관·개인회원 무료
        A sample size calculation algorithm was developed in a prototype version to select inspection samples in domestic bulk handling facilities. This algorithm determines sample sizes of three verification methods satisfying target detection probability for defected items corresponding to one significant quantity (8 kg of plutonium, 75 kg of uranium 235). In addition, instead of using the approximation equation-based algorithm presented in IAEA report, the sample size calculation algorithm based on hypergeometric density function capable of calculating an accurate non-detection probability is adopted. The algorithm based the exact equation evaluates non-detection probability more accurately than the existing algorithm based on the approximation equation, but there is a disadvantage that computation time is considerably longer than the existing algorithm due to the large amount of computational process. It is required to determine sample size within a few hours using laptop-level performance because sample size is generally calculated with an inspector’s portable laptop during inspection activity. Therefore, it is necessary to improve the calculation speed of the algorithm based on the exact equation. In this study, algorithm optimization was conducted to improve computation time. In order to determine optimal sample size, the initial sample size is calculated first, and the next step is to perform an iterative process by changing the sample size to find optimal result. Most of the computation time occurs in sample size optimization process performing iterative computation. First, a non-detection probability calculation algorithm according to the sample sizes of three verification methods was improved in the iterative calculation process for optimizing sample size. A computation time for each step within the algorithm was reviewed in detail, and improvement approaches were derived and applied to some areas that have major effects. In addition, the number of iterative process to find the optimal sample size was greatly reduced by applying the algorithm based on the bisection method. This method finds optimal value using a large interval at the beginning step and reduces the interval size whenever the number of repetitions increases, so the number of iterative process is less than the existing algorithm using unit interval size. Finally, the sample sizes were calculated for 219 example cases presented by the IAEA report to compare computation time. The existing algorithm took about 15 hours, but the improved algorithm took only about 41 minutes using high performance workstation (about 22 times faster). It also took 87 minutes for calculating the cases using a regular laptop. The improved algorithm through this study is expected to be able to apply the sample size determination process, which was performed based on the approximate equation due to the complexity and speed issues of the past calculation process, based on the accurate equation.
        1 2 3 4 5