검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 288

        82.
        2012.09 KCI 등재 구독 인증기관·개인회원 무료
        ANIR (Atacama Near InfraRed camera) is a near infrared camera for the University of Tokyo Atacama 1m telescope, installed at the summit of Co. Chajnantor (5,640 m altitude) in northern Chile. The high altitude and extremely low water vapor (PWV = 0.5 mm) of the site enable us to perform observation of hydrogen Paα emission line at 1.8751 μm . Since its first light observation in June 2009, we have been carrying out a Paα narrow-band imaging survey of nearby luminous infrared galaxies (LIRGs), and have obtained Paα for 38 nearby LIRGs listed in AKARI/FIS-PSC at the velocity of recession between 2,800 km/s and 8,100 km/s. LIRGs are affected by a large amount of dust extinction ( AV~ 3 mag), produced by their active star formation activities. Because Paα is the strongest hydrogen recombination line in the infrared wavelength ranges, it is a good and direct tracer of dust-enshrouded star forming regions, and enables us to probe the star formation activities in LIRGs. We find that LIRGs have two star-forming modes. The origin of the two modes probably come from differences between merging stage and/or star-forming process.
        83.
        2012.06 구독 인증기관·개인회원 무료
        The objective of the present study was to investigate the effects of different concentrations of sorbitol supplementation for in vitro maturation medium and in vitro culture medium, on porcine cumulus oocyte complexe(COC) maturation and subsequent developmental capacity after parthenogenetic activation. Porcine COC were cultured for 44 h(0~ 22 h termed MI stage and 22~44 h termed MII stage) in TCM199 without(— ) or with(+) sorbitol (20 μM, 100 μM, 200 μM), and the resultant metaphase II oocytes cultured in PZM-3 for 7 days following activation. Our results showed that supplementation with appropriate concentrations of sorbitol (20 μM) during full term maturation culture(MI+/MII+) significantly(p<0.05) improved blastocyst formation rates and total cell number. When the concentration of sorbitol were increased to 100 μM and 200 μM during maturation culture, the maturation rate of COC were significantly reduced compared with 20 μΜ or control groups. Also blastocyst formation rates significantly(p<0.05) reduced with increasing concentration of sorbitol(200 μM). Supplementation with sorbitol(20 μM, 50 μM, 100 μM) into PZM-3 for in vitro culture significantly(p<0.05) inhibited blastocyst formation compared with control group. However, the blastocyst formation rates start to rise again when 50 μ M sorbitol was used for the first 48 hours and then cultured in PZM-3 without sorbitol. There was no significant difference in cell number between control and sorbitol treated groups. When the activated oocytes were cultured in PZM-3 for 48h and then cultured in PZM-3 with sorbitol, interestingly, the blastocyst formation rate was similar to that of PZM-3 with sorbitol for in vitro culture and significantly lower than control group. These results suggest that addition of low concentrations of sorbitol(20 μM) during oocyte maturation is beneficial for subsequent blastocyst development and improved embryo quality. However, treatment with sorbitol supplementation during in vitro culture medium is negative effect to blastocyst formation.
        84.
        2012.06 구독 인증기관·개인회원 무료
        Epigenetic status of the genome of a donor nucleus has an important effect on the developmental potential of cloned embryos produced by somatic cell nuclear transfer (SCNT). In our previous study has results showed that the donor cells treated with 5-aza-2’- deoxyctidine (5-aza-dC, DNA methylation inhibitors) and Trichostatin A (TSA, histone deacetylase inhibitors) could improve the development of porcine nuclear transfer embryos in vitro. In this study we want to investigate why these two drugs treatment with the donor cell can improve the cloning efficiency, whether they can alter the epigenetic status of the genome of the donor nucleus. This study included 6 groups: control group, the donor cell (porcine fetal fibroblast cell) with no treatment; 2.5 nM 5-aza-dC group, the donor cells treated with 2.5 nM 5-aza-dC for 1h; 5-aza-dC group, the donor cells treated with 5 nM 5-aza-dC for 1h; TSA group, the donor cells treated with 50 nM TSA for 1h; 2.5 nM 5-aza-dC+TSA group, the donor cells treated with 2.5 nM 5-aza-dC for 1h and subsequently treated with 50 nM TSA for another 1h; 5-aza-dC+TSA group, the donor cells treated with 5 nM 5-aza-dC and 50 nM TSA together for 1h. The first experiment detected the DNA methylation status in the different groups. After treatment with these two drugs, the DNA methylation level of the donor cells decreased, however there is no significant difference among the groups. This result indicated that the donor cell treatment with 5-aza-dC and TSA can partially alter the DNA methylation status of the donor cells. The second experiment checked the histone acetylation level of the donor cells treated with these two drugs by western blot. TSA, 2.5 nM 5-aza-dC+TSA, 5 nM 5-aza-aC+TSA, these three groups can significantly improve the hisone acetylation level compared with control and 5-aza-dC groups, there is no significant difference among these three groups. The results of this study suggest that the donor cells treated with 5-aza-dC and TSA can partially decrease DNA methylation and can significantly improve the histone acetylation level of the donor cells, these alterations of the epigenetic modification maybe can improve the clonging efficiency.
        85.
        2012.06 구독 인증기관·개인회원 무료
        In all the studies of mammalian species, chromatin in the germinal vesicle (GV) is initially decondensed with the nucleolus not surrounded by heterochromatin (the NSN configurations). During oocyte growth, the GV chromatin condenses into perinucleolar rings (the SN configurations) or other corresponding configurations with or without the perinucleolar rings, depending on species. During oocyte maturation, the GV chromatin is synchronized in a less condensed state before germinal vesicle breakdown (GVBD) in species that has been minutely studied. As not all the species show the SN configuration and gene transcription always stops at the late stage of oocyte growth, it is suggested that a thorough condensation of GV chromatin is essential for transcriptional repression. Because the GV chromatin status is highly correlated with oocyte competence, oocytes must end the NSN configuration before they gain the full meiotic competence and they must take on the SN or corresponding configurations to stop gene transcription before they acquire the competence for early embryonic development. In this study, we firstly investigated whether the follicle size could determine chromatin configuration in porcine oocyte. For this experiment, follicles was divided into three groups (<1 mm follicle, 1~3 mm follicle and 3~6 follicle). Using DAPI staining, the GV nucleolus and chromatin of porcine oocytes was classified into SN, SN-NSN and NSN configurations. MⅠ and M Ⅱ of three groups's Mature oocytes by staining was confirmed the configuration of chromatin. The maturation rate and parthenogenetic development potential were significant different between the SN and NSN configurations oocytes. These results indicated that chromatin changes in GV oocytes affect the development potential of porcine embryos.
        86.
        2012.06 구독 인증기관·개인회원 무료
        Live offspring is obtained from in vitro production of porcine embryos, but the procedure is still associated with great inefficiencies. In mammalian oocytes, acquisition of meiotic competence coincides with a decrease in general transcriptional activity at the end of the oocyte growth phase. In this study, we investigated the expression and sub-cellular localization of positive transcription elongation factor P-TEFb (CDK9/Cyclin T1), a RNA polymerase II CTD kinase during pig oocyte growth and early embryonic development. Localization and expression of components involved in mRNA and rRNA transcription were assessed by immunocytochemistry in growing and fully-grown oocytes. In addition, meiotic resumption, germinal vesicle breakdown, nuclear transcription and embryonic genome activation (EGA) were analyzed in oocytes and embryos cultured in presence of a potent CDK9 inhibitor, flavopiridol. Our analyses, demonstrated that CDK9 became co- localized partially with phosphorylated Pol II CTD and mRNA splicing complexes. Surprisingly, CDK9 was co-localized with Pol I-specific transcription factor, UBF, and gradually localized in nucleolar peripheries at the final steps of oocyte growth. Later, CDK9 became associated with nucleolar structures at 4-cell stage. Treatment with flavopiridol resulted in arrest in meiotic resumption, germinal vesicle breakdown as well as a decline in global transcription. Flavopiridol also inhibited embryo development beyond EGA. All together, these data suggest that CDK9 has a dual role in both Pol I- and Pol II-dependent transcription in pig oocyte growth and embryonic development.
        88.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aim of this study was to evaluate the post-thawed characteristics of leopard cat semen. In this experiment, semen was collected from two leopard cats (A and B) at wild animal center in Seoul Grand Park in Korea. After collection, the sperms were washed with D-PBS and diluted by the freezing medium (Irvine science, USA) and stored in liquid nitrogen. The post-thawed concentration was for A and for B. The viability of post-thawed sperm from A and B individual was 24.0% and 19.0%, respectively. Pre-freezing motility of A and B individual semen was 68.54% and 56.65. Leopard cat A had more normal sperm than that of B (69.5% vs. 54.5%). Acrosome integrity analysis detected live (14.5% vs. 9.0%), damage (39.0% vs. 44.0%) and dead (46.0% vs. 47.0%) in leopard cat A and B, respectively. The present results concluded that leopard cat semen can be collected successfully by electro-ejaculation method and cryopreserved successfullyfor future use in different assisted reproductive technologies. The cryopreservation protocol needs to be modified for increasing post-thawed viability of leopard cat spermatozoa.
        4,000원
        94.
        2011.10 구독 인증기관·개인회원 무료
        Cell transplantation therapy using adult stem cells has recently been identified as a potential treatment for spinal cord injury (SCI). But, recovery after traumatic SCI is very limited. As dogs are physiologically much more similar to human compared with other traditional mammalian models in disease presentation and clinical responses, a number of researches demonstrated canis familiaris is a suitable model for human diseases. This study investigated the effect of transplantation of canine Mesenchymal Stem Cells (cMSC) and neural-induced cMSC (nMSC) to understand how these cells improve neurological function in canine SCI model. The differentiation of cMSC into neural precursor cells was induced in dulbecco’s modified eagle’s medium supplemented with N2-supplement, dibutyryl cyclic adenosine monophosphate, and butylated hydroxyanisole. SCI was induced between T1 and T2 by surgical hemi-section in adult dogs, and then assigned to two groups according to the applied cell types (cMSC vs nMSC). Pelleted cMSC or nMSC were transplanted directly into the injured site after SCI, respectively. Analysis of motor function after transplantation was evaluated by modified Olby score. Magnetic resonance imaging (MRI), histological and immunohistichemical analysis were also performed. Functional recovery in group of cMSC was increasing gradually after transplantation and was higher than nMSC. In MRI, we could not confirm any difference between the cMSC and nMSC experimental groups. Immunohistochemically, beta3-tubuline and nestin were observed in injury site of two experimental groups with the expression level close to non-injured groups. Transplantation of mesenchymal stem cells could promote neuronal reconstruction and repair motor function in SCI. These showed mesenchymal stem cells could be a great candidate as a therapeutic tools in degeneration disease, and dogs could be used to explore human regenerative medicine as a promising animal model. This research was supported by iPET (Grants 110056032CG000), Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea.
        95.
        2011.10 구독 인증기관·개인회원 무료
        In all the studies of mammalian species, chromatin in the germinal vesicle (GV) is initially decondensed with the nucleolus not surrounded by heterochromatin (the NSN configurations). During oocyte growth, the GV chromatin condenses into perinucleolar rings (the SN configurations) or other corresponding configurations with or without the perinucleolar rings, depending on species. During oocyte maturation, the GV chromatin is synchronized in a less condensed state before germinal vesicle breakdown (GVBD) in species that has been minutely studied. As not all the species show the SN configuration and gene transcription always stops at the late stage of oocyte growth, it is suggested that a thorough condensation of GV chromatin is essential for transcriptional repression. Because the GV chromatin status is highly correlated with oocyte competence, oocytes must end the NSN configuration before they gain the full meiotic competence and they must take on the SN/corresponding configurations and stop gene transcription before they acquire the competence for early embryonic development. In this study, we firstly investigated whether the layer of cumulus cells and size of oocytes could determine chromatin configurations in porcine oocytes. Using Hoechst3342 staining, the GV nucleolus and chromatin of porcine oocytes was classified into SN and NSN configurations. Next, we examined the changes in GV chromatin configurations during growth and maturation of porcine oocytes. In addition, the maturation and parthenogenetic development abilities in vitro were significant different between the SN and NSN configurations oocytes. These results indicated that chromatin changes in GV oocytes affect the development potential of parthenogenetic embryos.
        96.
        2011.10 구독 인증기관·개인회원 무료
        In vitro production of porcine embryos, including in vitro maturation of oocytes followed by in vitro fertilization and in vitro culture, may result in live offspring, but it is still associated with great inefficiencies. In mammalian oocytes, acquisition of meiotic competence coincides with a decrease in general transcriptional activity at the end of the oocyte growth phase. In this study, we investigated the expression and sub‐cellular localization of CDK9, a RNA polymerase II CTD kinase during pig oocyte growth. Localization and expression of components involved in mRNA and rRNA transcription were assessed by immunocytochemistry in growing and fully‐grown oocytes. In addition, meiotic resumption, germinal vesicle breakdown and nuclear transcription were analyzed in oocytes cultured in presence of a potent CDK9 inhibitor, flavopiridol. Our analyses, demonstrated that CDK9 became co‐localized partially with phosphorylated Pol II CTD and mRNA splicing complexes. Surprisingly, CDK9 was co‐localized with Pol Ispecific transcription factor, UBF, and gradually localized in nucleolar peripheries at the final steps of oocyte growth. Treatment with flavopiridol resulted in arrest in meiotic resumption, germinal vesicle breakdown as well as a decline in global transcription. All together, this data suggest that CDK9 has a dual role in both Pol I‐ and Pol II‐dependent transcription in pig oocyte growth.
        97.
        2011.10 구독 인증기관·개인회원 무료
        5‐aza‐2’‐deoxyctidine (5‐aza‐dC) is DNA methylation inhibitor and Trichostatin A (TSA) is histone deacytlase inhibitor, both of them can alter the level of the epigenetic modification of cells. The objective of this study was to investigate the effects of treatment with 5‐aza‐dC and TSA into fetal fibroblasts on the development of porcine nuclear transfer (NT) embryos. In this study, experiments were performed in order to modify epigenetic status in donor cells and evaluate developmental potential of NT embryos. 5‐ aza‐dC or TSA or combining treatment of TSA and 5‐aza‐dC was treated into growing donor cells for 1 h exposure and development of NT embryos was evaluated. Experiment was performed with 3 groups: control group (donor cells without treatment); TSA group (donor cell treated with 50 nM TSA for 1 h); TSA + 5‐aza‐dC group (donor cells were treated with 50 nM TSA and 5 nM 5‐aza‐dC for 1 h); TSA+1/2(5‐aza‐dC) group (donor cells were treated with 50 nM TSA for 1h and subsequently treated with 2.5 nM 5‐aza‐dC for another 1h). When donor cells were individually treated with 5 nM 5‐aza‐dC or 50 nM TSA for 1h, the blastocyst rate of NT embryos increased significantly compared with control group [18.8% vs 13.4% (5 nM 5‐aza‐dC group vs control group), and 26.2% vs 11.8% (50 nM TSA group vs control group), p<0.05]. However, the blastocyst rate in combining treatment group (50 nM TSA + 5 nM 5‐aza‐dC) did not increase compare with control group (12.3% vs 11.8%, p>0.05). When the donor cell were individually treated with 50nM TSA for 1 h firstly and then treated with 2.5 nM 5‐aza‐dC for another 1h, the blastocyst rate was significantly improved compared with control and TSA group (28% vs 10.2% and 23.7%, p<0.05). The present study suggested that donor cells treated with TSA or low concentration of TSA+5‐azadC in short time exposure may enhance the development of porcine NT embryo.
        98.
        2011.10 구독 인증기관·개인회원 무료
        Acteoside (verbascoside) is a typical phenylethanoid glycoside, extracted from various plants. It has various biological functions such as anti-oxidant, anti-inflammation, and anti-hypertension. Specially, it was powerful anti-oxidants either by direct scavenging of reactive oxygen and nitrogen species, or by acting as chain-breaking peroxyl radical scavengers. We examined the role of acteoside in IVM medium on the morphological progress of meiosis, developmental competence, and ROS in porcine oocytes. And we investigated effect of acteoside on the oocytes condition represented by cytoplasmic maturation by homogeneous distribution and formation of cytoplasmic organelles and regulation of apoptosis-related genes. The selected COCs were cultured in TCM-199 with various concentration of acteoside: 0 (control), 10, 30, and 50 μM. After 22 h of maturation with hormones, the oocytes were washed twice in a fresh maturation medium before being cultured in hormone-free medium for additional 22 h. The oocytes maturation rates of supplemented with acteoside were no significantly different compared with control group (71.13, 75.96, 72.95 and 73.68%, respectively). Level of ROS was significantly decreased in acteoside treated group. Furthermore, the parthenogenetic blastocyst rate was significantly improved in 10 μM acteoside treated group compared with control group (40.03 vs. 22.95%). During IVM, 10 μM acteoside treated oocytes showed that the mitochondria and lipid droplet were smaller and homogeneous distribution in cytoplasm compare with non-treated control oocytes. And reverse transcription polymerase chain reaction (RT-PCR) witarthenogenetic blstocysts revealed that acteoside increased the anti-apoptoticgenes, otherwise reibued pro-apoptotic genes. In conclusion, our results represents that addition of acteoside to the IVM medium has a beneficial effect in physiology of porcine oocytes such as viability and activation, providing a improved method for porcine oocytes in vitro.
        1 2 3 4 5