검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 103

        101.
        1998.10 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to evaluate water quality in the Keum River estuary using principal component analysis. The results was summarized as follow; Water quality in the Keum River estuary could be explained up to 70.40% by three factors which were included in the inffluent loading by the Keum River and Kyungpo cheon(38.99%), seasonal variation and organic matter pollution(19.05%), sediment resuspension and internal metabolism(12.35%). For spatial variation of factor score, artificial pollutant loading is highest at st.1, below Keum River barrage, and decreases toward the outer sea. For annual variation of factor score, factor 1 was highly related to artificial pollutant loading, and it was greatly increased in 1994. Also, organic matter pollution, sediment resuspension and internal metabolism were increased to every year. is necessary to control the nutrient loading by Keum river and Kyongpo cheon for Water quality management of estuary.
        102.
        1994.09 KCI 등재 서비스 종료(열람 제한)
        Masan bay is one of the polluted enclosed bays, which has red tides problem and the formation of oxygen deficient water in the bottom layer. Most important factors that cause eutrophication and red tide is nutrient materials containing nitrogen and phosphorus which stem from terrestrial sources and nutrients released from sediment. Therefore, to improve of water quality, reduction of these nutrient loads should be indispensible. At this study, the three-dimensional numerical hydrodynamic and eutrophication model, which were developed by Institute for Resources and Environment of Japan, were applied to analyze the processes affecting the phytoplankton production and also to evaluate the effect of water quality improvement plans on phytoplankton production. in field survey, the range of concentrations of chlorophyll -a at surface area was found to be 29.17 - 212.5㎎/㎥, which were exceeding eutrophication criteria. The constant currents defined by integrating the simulated tidal currents over 1 tidal cycle showed the counterclockwise eddies in the southern part of Budo. The general directions of constant currents were found to be southward at surface and northward at bottom over all the bay. The eutrophicatior model was calibrated with the data surveyed in the field of the study area in June, 1993 The calculated results are in fairly good agreement with the observed values within relative error of 30%. The pollutantI load from the sources such as the input from terrestrial sources and release from the sediment was reduced by the rate of 50, 70, 90, 98% to evaluate the effect of phytoplankeon production. Phytoplankton production was reduced to 50% in case of the 90% reduction of the input loads from terrestrial sources and 8% in case of the 90% reduction of the load from sediment.
        103.
        1993.03 KCI 등재 서비스 종료(열람 제한)
        Adsorption process using granular activated carbon(GAC) has been considered as one of the most effective water treatment technologies to remove humic acid which is recognized as trihalomethane(THM) precursor in chlorination. To design the most effective GAC process, it is necessary to conduct the test of adsorption performance by means of isothem, batch rate and column studies and to select the most effective activated carbon according to raw materials of GAC-lignite and coconut shell. The objective of this study is to investigate the adsorption performance of humic acid on two activated carbons- lignite activated carbon(LAC) and coconut shell activated carbon(CAC) made in Korea. It is available to represent UV-abs and trihalomethane formation potential(THMFP) as concentration of humic acid due to good relationship. The adsorption capacity of humic acid is not concerned with surface area of activated carbon but with pore size related to about 100 A, and then LAC forming at the extent of mesopore is found to be eight times more effective in adsorption capacity than CAC forming at micropore. The adsorption capacity of LAC and CAC is better at pH 5.5 than at pH 7. Pore and surface diffusion coefficients calculated from the diffusion model are 7.61×10 exp (13)㎡/sec, 3.52×10 exp(-15) ㎡/sec for CAC, and 3.38×10 exp (-12)㎡/sec and Ds=1.48×10 exp (-15)㎡/sec for GAC respectively. From the results of column test it shows that the performance of LAC is also better than CAC and the optimal EBCT(Empty Bed Contact Time) is 4.52min. and activated carbon removes selectively the components of humic acid to be easily formed to THM.
        6