PURPOSES : For high driving performance and service life of cement concrete pavement, construction quality must be secured. The construction quality is to be measured after pavement construction, but in this case, it is difficult to improve construction quality. Therefore, it is necessary to develop a method for measuring and correcting the profile of the pavement and subbase so that the construction quality can be monitored immediately after construction. METHODS : The device that can measure the construction quality of cement concrete pavement has been developed. Through the experiment simulating the field situation, the profile of the pavement and subbase was measured and calibration method was developed.
RESULTS : In the measured profile, an outlier by the sensor and noise by the sensor and vibration were measured, and a step-like profile was measured differently from the acture one. To remove outliers, the boxplot outlier removal method was applied by overlapping each data group. The noise were removed by a low pass filtering. And, it was calibrated to a profile similar to the acture one through the sampling interval adjustment and the weighted moving average method. CONCLUSIONS : The method that can measure and calibrate the profile that is almost identical to the actual one has been developed. Accordingly, it is expected that the performance of the pavement can be improved by accurately monitoring the construction quality immediately after construction.
PURPOSES : Rut depth of asphalt pavements is a major factor that affects the maintenance of pavements as well as the safety of drivers. The purpose of this study was to analyze the factors influencing rut depth, using data collected periodically on national highways by the pavement management system and, consequently, predict annual rut depth change, to contribute to improved asphalt pavement management.
METHODS : The factors expected to influence rut depth were determined by reviewing relevant literature, and collecting the related data. Further, the correlations between the annual rut depth change and the influencing factors were analyzed. Subsequently, the annual rut depth change model was developed by performing regression analysis using age, present rut depth, and annual average maximum temperature as independent variables.
RESULTS : From the sensitivity analysis of the developed model, it was found that age affected the annual rut depth change the most. Additionally, the relationship between the dependent and independent variables was statistically significant. The model developed in this study could reasonably predict the change in the rut depth of the national highway asphalt pavements. CONCLUSIONS : In summary, it was verified that the model developed in this study could be used to predict the change in the National Highway Pavement Condition Index (NHPCI), which represents comprehensive conditions of national highway pavements. Development of other models that predict changes in surface distress as well as international roughness index is required to predict the change in NHPCI, as they are the independent variables of the NHPCI prediction model.
In this study, for the treatment efficiency of the IGF process for the treatment of produced water (PW) discharged from the oil sands plant, the bench-scale oil sands plant PWT package was designed, manufactured and evaluated to verify the efficiency of the process. The microbubble generation efficiency and microbubble size change according to the circulation pump pressure were observed, and the correlation between influent concentration and temperature, residence time and oil-water separation performance was analyzed.
Thermal and wind panels are installed on offshore oil and gas platforms to protect personnel, equipment and structures. However, in general, panels are designed and manufactured through trial and error based on performance tests. For this reason, it is difficult to develop and design a heat sink in the Korean shipbuilding and offshore equipment industry due to the lack of performance test data and limited experience. In this study, the experimental results performed to verify the performance of the thermal and wind panels were analyzed, and the characteristics and performance characteristics of the thermal and wind panels were investigated. The conclusions drawn from this study will be useful in terms of the design and development of shielding.
PURPOSES : In this study, an ASR-reducing (alkali-silica reaction) cement was developed to prevent the blow-up of concrete pavements. To develop ASR-reducing cement, various amounts of ground granulated blast furnace slag (GGBFS), and fly ash (FA) were substituted with Portland cement, and the ASR reduction effect was verified through various experiments.
METHODS : The physical properties of ASR-reducing cement, varying with the substitution amounts of GGBFS and FA, were verified through compressive strength tests. In addition, the ASR reduction effect was examined using accelerated mortar bar tests. Furthermore, the reasons for the ASR reduction were investigated using microstructural analysis techniques, such as XRD and TG/DTG.
RESULTS : There was a difference in the compressive strength results according to the amount of GGBFS and FA substitution. In addition, the samples with GGBFS and FA exhibited relatively lower compressive strengths at 3 days, than OPC samples, but the compressive strength at 28 days was higher than that of the OPC samples. The samples with GGBFS and FA had higher compressive strength at 28 days than OPC samples, because the substituted GGBFS and FA induced pozzolanic reaction. Through XRD and TG/DTG analyses, various degrees of pozzolanic reaction occurring in the samples were examined, and a more active pozzolanic reaction occurred in the samples with FA than in the samples with GGBFS. Therefore, it appeared that the ASR reduction effect occurred because of the induced pozzolanic reaction.
CONCLUSIONS : GGBFS and FA substituting Portland cement indicated an ASR reduction effect, which was owing to the pozzolanic reaction. In addition, FA indicated a greater ASR reduction effect than GGBFS, which suggested that FA induced a more active pozzolanic reaction than GGBFS.
본 연구는 자가간호프로그램이 요추간판제거술 환자의 운동이행 자기효능감, 자가간호지식, 자가간호이행에 미치는 효과를 확인하기 위한 실험연구이다. 대상자는 D광역시 소재 일개 척추전문병원 입원환자 중 미세현미경 요추간판제거술을 받은 환자로 실험군 26명, 대조군 27명이다. 수집된 자료는 SPSS 25프로그램을 이용하여 평균, 백분율, 표준편차, t-test, χ2-test, t-test, repeated measures ANOVA로 분석하였다. 연구결과 자가간호프로그램 중재를 받은 실험군은 제공받지 않은 대조군에 비해 시간이 경과함에 따라 보조기 관리지식(p=.001)과 일상생활관리지식점수(p=.005)가 더 높아 지지되었다. 또한 자가간호 프로그램을 제공받은 실험군은 제공받지 않는 대조군보다 보조기 관리이행도(p=.011), 일상생활 이행도 (p=.007), 유해생활 습관관리 이행도(p=.011)가 높아 지지되었다. 따라서 자가간호프로그램은 요추간판제 거술 환자의 수술 전후 적용을 통해 운동이행 자기효능감, 자가간호지식 및 자가간호이행도를 향상시켜 보다 빠른 회복을 도울 수 있는 프로그램이라고 할 수 있다.
건조 수산가공식품의 안전성 확보를 위해 2020년 경기도 내 유통 중인 건조 수산가공식품 12품목 120건을 수거하여 방사능(131I, 134Cs, 137Cs) 및 중금속(납, 카드뮴, 비소, 수은) 함량을 분석하였다. 모든 시료에서 자연 방사성 핵종 중 하나인 40K만 검출되었으며, 인공 방사성 물질인 131I, 134Cs, 137Cs는 최소검출가능농도(MDA) 이하의 값을 나타내었다. 중금속의 평균 함량[평균±표준편차(최소값-최대값)]은 생물로 환산하였을 때 납 0.066±0.065(N.D.-0.332) mg/kg, 카드뮴 0.200±0.406(N.D.-2.941) mg/kg, 비소 3.630 ±3.170(0.371-15.007) mg/kg, 수은 0.009±0.011(0.0005-0.0621) mg/kg 이었으며, 수산물에서 중금속 기준이 있는 제품의 경우 모두 기준 규격 이내로 나타났다. 국내산 제품과 수입산 제품의 중금속 함량은, 조개의 카드뮴과 새우의 수은 함량에서만 유의적인 차이를 나타내었다(P<0.05). 본 연구 결과, 유통 중인 건조 수산가공식품에서 방사능 및 중금속은 안전한 수준인 것으로 판단되나, 식품 중 특히 수산물에서 방사능 오염에 대한 국민의 우려가 크기 때문에 국민들의 불안감 해소를 위해 방사능 검사는 지속적으로 필요할 것으로 생각된다. 또 향후 건조 수산가공식품 중에서도 건조된 형태로 직접 섭취 가능한 제품의 중금속 관리 기준 설정을 위한 기초 자료로 활용할 수 있을 것이다.
PURPOSES : Given that large-scale repair works of expressway bridge pavements have high maintenance cost and long traffic blocking time, the thin overlay method that maintains the existing pavement is attracting attention. In this study, because the bridge thin overlay has not been introduced in Korea yet, the basic physical properties of the epoxy thin overlay, which is mainly used for the bridge thin overlay, were investigated, and the skid resistance and bond performance were analyzed.
METHODS : Basic physical property tests were performed on each of the epoxy binders, aggregates, and mixtures used in epoxy thin overlay. They were also compared and reviewed against foreign standards. The epoxy binders were tested for viscosity, gel time, and thermal compatibility. The aggregates were tested in terms of water absorption, specific gravity, and gradation. The compressive and flexural strengths of the mixtures were investigated. The epoxy thin overlay has the possibility of detachment of aggregates, so the skid resistance was tested according to the paving phase. In addition, to investigate the bond performance, which is the most important performance of the epoxy thin overlay, the bond strength test was performed by varying the moisture condition and treatment condition of the existing layer surface.
RESULTS : The basic physical properties of the materials used in the epoxy thin overlays satisfied foreign standards except for the gradation of aggregates. The skid resistance did not satisfy the standard when the epoxy was exposed, whereas the skid resistance did satisfy the standard when the aggregates were exposed, even after the abrasion test. The bond strength of the epoxy thin overlay satisfied the standard in all cases. The bond strength was the highest when the relative humidity of the existing layer surface was 60%.
CONCLUSIONS : The materials of epoxy thin overlay that could be obtained in Korea satisfied the basic physical property standards except for aggregate gradation. Given that the aggregate gradation could be adjusted, it can be concluded that the epoxy thin overlay could be introduced in Korea. In addition, it was confirmed that the skid resistance and bond strength of the epoxy thin overlay were high enough to be used in general road conditions. It was determined that the existing layer surface should maintain an optimal relative humidity of approximately 60% because the moisture condition affects the bond strength.
본 연구는 발효 전후 황백 시료의 항산화 활성, 피부기능 개선 효과 및 항균 활성을 연구하고 그 효능을 평가하여 발효 황백의 피부기능 개선 효능에 대한 자료를 제공하고자 하였다. 항산화 활성을 평가하기 위해 총 플라보노이드, 총 페놀 함량, FRAP, DPPH 라디칼 소거능, reducing power, 아질산염소거능 등을 측정하였고, 피부 기능 개선 효과를 확인하기 위해 LPS를 처리한 RAW 264.7 대식세포와 TRF-α/IFN-γ를 처리한 HaCaT 피부표피 세포를 바탕으로 XTT 세포독성평가, NO 생성 억제능 평가, ELISA kit를 이용한 염증성 cytokine의 생성량을 평가 하여 항염증 활성을 평가하였다. 항산화 활성의 측정 결과 발효 전 황백 시료에서는 현저히 낮은 결과를 보였으 나, 발효과정을 거치며 항산화 활성이 증가하는 결과를 확인할 수 있었다. XTT 세포독성 평가 결과, RAW 264.7 세포와 HaCaT 세포 모두 3.13, 6.25, 12.5 μg/mL의 농도에서 독성이 없음을 확인하였다. NO 생성 억제능 평가와 ELISA kit를 이용한 실험 결과 황백 시료가 발효됨에 따 라 염증반응 매개물질인 NO의 생성량이 감소하고 IL-6와 IL-1β의 발현이 현저하게 감소함을 확인할 수 있었다. 발효 전후 황백 추출물의 berberine 및 palmatine의 함량을 분석한 결과 palmatine은 검출되지 않았으며 berberine의 함량은 발효에 따라 증가함을 확인할 수 있었다.
The purpose of this study was to determine the optimum extraction method suitable for the availability of biological activities in unripe apples known to be rich in functional components. Unripe apples ‘Hongro’ picked on May 28th, 2019 were extracted by various extraction methods (hot water, ethanol, enzymatic pre-treatment, ultrasonic wave, and subcritical water) and their extracts were investigated yield, effective component contents, and antioxidant activities. Overall, the yields by the extraction solvent were higher in water than in organic solvent(ethanol) because water-soluble compounds were eluted from a polar solvent. Total phenol contents of the ultrasonic wave (ethanol) extracts were significantly higher in 6 times than hot water extract. Contents of flavonoid were highest in the ethanol extract at 29.14 mg QE/g. Contents of tannin and ursolic acid were also significantly higher in the ultrasonic wave (ethanol) extract. The DPPH radical and ABTS radical scavenging activities were the strongest in the ultrasonic wave (ethanol) extract. Correlation between effective components and antioxidant activities was high in the total phenol content with ABTS and the ursolic acid content with DPPH (p<0.01). The above results suggested that ultrasonic wave (ethanol) extract of unripe apples has the potential to act as a functional material.
The activity of anaerobic ammonium oxidation (ANAMMOX) immobilized in synthetic media (Poly Ethylene Glycol, PEG) and granular form was evaluated comparatively to investigate the effect of influent nitrogen concentration and exposure of oxygen. In ANAMMOX granule reactor, when concentration of influent total nitrogen increased to 500mg/L, removal efficiency of ammonium, nitrite and nitrate were shown to 90.5±6.5, 96.6±4.9, and 93.2±6.1%, respectively. In the case of the PEG gel, it showed lower nitrogen removal performance, resulting in that the removal efficiency of ammonium, nitrite and nitrate were shown to 83.3±13.0, 96.4±6.1, and 90.3±7.5%, respectively. In second step, when exposed to oxygen, the nitrogen removal performance in the ANAMMOX granule reactor also remained stable, but the activity of PEG gel ANAMMOX was found to be inhibited. Consequently, the PEG gel ANAMMOX was a higher sensitivity than that of granular ANAMMOX with two variables applied in this study.
PURPOSES : The purpose of this study was to investigate the performance of additives that affect internal curing in order to reduce the damage occurring in concrete pavements.
METHODS : SAP was used as an additive to reduce internal curing in concrete pavements. SAP is an additive that has a very high absorption rate which prevents concrete wrappers from externally draining water. To evaluate the internal curing performance according to the ratio of SAP, we identified the number of cracks and amount of abrasion reduction.
RESULTS : Plastic shrinkage and durability of a concrete mixture with added SAP were evaluated. The following results were obtained: (1) SAP showed a tendency to reduce slumps due to absorption of the concrete mixture. (2) It was possible to verify that concrete condensation did not occur during the penetration resistance test and that the initial curing did not lead to reactions within the mixture. (3) Adding more than 0.6% of SAP for dry curing resulted in greater compressive strength at all ages than OPC, with the highest compression strength of 0.9% after 56 days. (4) Regarding abrasion resistance, it was found that adding SAP was 30~50% better than adding the OPC mixture, and at 0.9% compression strength, abrasion resistance showed the best performance. (5) In the chlorine ion immersion resistance experiment, the passing charge of the OPC mixture was rated “high,” but it was rated “normal” in SAP. The results showed that the addition of SAP improved the water density of concrete due to internal curing effects, and that it showed the greatest chlorine ion penetration resistance for a compressive strength of 0.9%. (6) Regarding plastic shrinkage resistance, cracks did not occur on the surface until the end of the experiment, but the plastic shrinkage rate upon addition of SAP was relatively low compared to that of the OPC mixture.
CONCLUSIONS : Recent studies have shown that internal curing techniques can be applied using SAP to prevent shrinkage due to the loss of water and to decrease the effects of hydration. If internal curing effects are expressed using SAP, it is thought that contraction due to a loss of moisture and reduction in sign language reaction can be prevented.