검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 194

        41.
        2012.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a high energy ball milling process was employed in order to improve the densification of direct nitrided AlN powder. The densification behavior and the sintered microstructure of the milled AlN powder were investigated. Mixture of AlN powder doped with 5 wt.% as a sintering additive was pulverized and dispersed up to 50 min in a bead mill with very small beads. Ultrafine AlN powder with a particle size of 600 nm and a specific surface area of 9.54 was prepared after milling for 50 min. The milled powders were pressureless-sintered at for 4 h under atmosphere. This powder showed excellent sinterability leading to full densification after sintering at for 4 h. However, the sintered microstructure revealed that the fraction of yitttium aluminate increased with milling time and sintering temperature and the newly-secondary phase of ZrN was observed due to the reaction of AlN with the impurity.
        4,000원
        42.
        2011.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The goal of the present work was to investigate the development of a geopolymeric ceramic material from a mixture of mine residue, coal fly ash, blast furnace slag, and alkali activator solution by the geopolymer technique. The results showed that the higher compressive strength of geopolymeric ceramic material increased with an increase in active filler (blast furnace slag + coal fly ash) contents and with a reduction of mine residue contents. The geopolymeric ceramic had very high early age strength. The compressive strength of the geopolymeric ceramic depended on the added active filler content. The maximum compressive strength of the geopolymeric ceramic containing 20 wt.% mine residue was 141.2 MPa. The compressive strength of geopolymeric ceramic manufactured by adding mine residue was higher than that of portland cement mortar, which is 60 MPa, when cured for 28 days. SEM observation showed the possibility of having amorphous aluminosilicate gel within geopolymeric ceramic. XRD patterns indicate that the geopolymeric ceramic was composed of amorphous aluminosilicate, calcite, quartz, and muscovite. The Korea Standard Leaching Test (KSLT) was used to determine the leaching potential of the geopolymeric ceramic. The amounts of heavy metals were noticeably reduced after the solidification of mine residue with active filler.
        4,000원
        43.
        2011.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, gradient porous Al-Cu sintered body was fabricated by powder metallurgy processing. Al-Cu powder mixtures were prepared by low energy ball milling with various milling time. After ball milling for 3h, the shape of powder mixtures changed to spherical type with size of 100~500 . Subsequently, Al-Cu powder mixtures were classified (under 150, 150~300 and over 300 ) and compacted (20, 50 and 100 MPa). Then, they were sintered at for various holding time (10, 30, 60 and 120 min) in atmosphere. The sintered bodies had 32~45% of porosity. As a result, the optimum holding time was determined to be 60 min at and sintered bodies with various porosity were obtained by controlling the compacting pressure.
        4,000원
        44.
        2011.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to improve the weak mechanical properties of cast Mg alloys, Mg- (at%) alloy powders were synthesized using gas atomization, a typical rapid solidification process. The powders consist of fine dendrite structures less than 3 in arm spacing. In order to fabricate a bulk form, the Mg powders were compacted using magnetic pulse compaction (MPC) under various processing parameters of pressure and temperature. The effects of the processing parameters on the microstructure and mechanical properties were systematically investigated.
        4,000원
        45.
        2011.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nanostructured cobalt materials have recently attracted considerable attention due to their potential applications in high-density data storage, magnetic separation and heterogeneous catalysts. The size as well as the morphology at the nano scale strongly influences the physical and chemical properties of cobalt nano materials. In this study, cobalt nano particles synthesized by a a polyol process, which is a liquid-phase reduction method, were investigated. Cobalt hydroxide (Co(OH)2), as an intermediate reaction product, was synthesized by the reaction between cobalt sulphate heptahydrate (CoSO4·7H2O) used as a precursor and sodium hydroxide (NaOH) dissolved in DI water. As-synthesized Co(OH)2 was washed and filtered several times with DI water, because intermediate reaction products had not only Co(OH)2 but also sodium sulphate (Na2SO4), as an impurity. Then the cobalt powder was synthesized by diethylene glycol (DEG), as a reduction agent, with various temperatures and times. Polyvinylpyrrolidone (PVP), as a capping agent, was also added to control agglomeration and dispersion of the cobalt nano particles. The optimized synthesis condition was achieved at 220˚C for 4 hours with 0.6 of the PVP/Co(OH)2 molar ratio. Consequently, it was confirmed that the synthesized nano sized cobalt particles had a face centered cubic (fcc) structure and with a size range of 100-200 nm.
        4,000원
        46.
        2011.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To reduce manufacturing costs of crystalline silicon solar cells, silicon wafers have become thinner. In relation to this, the properties of the aluminium-back surface field (Al-BSF) are considered an important factor in solar cell performance. Generally, screen-printing and a rapid thermal process (RTP) are utilized together to form the Al-BSF. This study evaluates Al-BSF formation on a (111) textured back surface compared with a (100) flat back surface with variation of ramp up rates from 18 to 89˚C/s for the RTP annealing conditions. To make different back surface morphologies, one side texturing using a silicon nitride film and double side texturing were carried out. After aluminium screen-printing, Al-BSF formed according to the RTP annealing conditions. A metal etching process in hydrochloric acid solution was carried out to assess the quality of Al-BSF. Saturation currents were calculated by using quasi-steady-state photoconductance. The surface morphologies observed by scanning electron microscopy and a non-contacting optical profiler. Also, sheet resistances and bulk carrier concentration were measured by a 4-point probe and hall measurement system. From the results, a faster ramp up during Al-BSF formation yielded better quality than a slower ramp up process due to temperature uniformity of silicon and the aluminium surface. Also, in the Al-BSF formation process, the (111) textured back surface is significantly affected by the ramp up rates compared with the (100) flat back surface.
        4,000원
        47.
        2011.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sintered Nd-Fe-B magnets are widely used in many fields such as motors, generators, actuators, microwaves and so on due to their excellent magnetic properties. Many researchers have shown that the Nd-rich phase was essentially important for high magnet properties. In this study, we focused on controlling of the Nd-rich phase to enhance magnetic properties by the cyclic sintering process. Nd-Fe-B based sintered magnets were prepared by isothermal sintering and cyclic sintering processes. Magnetic properties and microstructure of the magnets were investigated. The coercivity was enhanced from 21.2 kOe to 23.27 kOe after 10 cycles of the sintering. The Nd-rich phase was effectively penetrated into the grain boundary between the grains by the cyclic sintering.
        4,000원
        48.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구는 남한지역의 시 공간 태양복사 분포를 분석하는 것이다. 2000년 1월부터 2007년 8월 까지 1분 간격으로 저장된 기상청 관할 22개 관측소의 전천일사 관측자료를 이용하였다. 수집한 일사량 관측자료는 시간에 대하여 변화하는 일사계 감도정수에 대한 불확실성을 제거하기 위하여 비교관측 결과와 태양복사 모델을 이용하여 보정을 하였다. 보정을 수행하기 위하여 강릉대학교 전천일사계를 22개 관측소의 일사계와 2007년 8월 동안 비교 관측을 하였다. 과거자료는 맑은 날에 대하여 태양복사 모형을 이용하여 시간에 대해 감소하는 일사계의 감도정수를 토대로 보정하였다. 모든 지점 및 모든 기간에 대한 평균은 13.31 MJ/day이며 보정을 통하여 13.75 MJ/day가 되어 0.44 MJ/day의 차이가 나타났다. 보정된 자료로 계절평균 및 연평균 태양복사 분포를 계산하였으며 전운량, 오존전량, 에어로솔 광학 두께, 지표면 알베도, 가강수량과 관계성을 분석하였다. 가장 큰 영향을 미치는 전운량 자료를 보정된 자료와 비교한 결과 과거(원시)자료보다 일관성이 더 높게 나타났다.
        5,200원
        49.
        2010.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mo nanopowder was synthesized by ball-milling and subsequent hydrogen-reduction of powder. To fabricate ultra fine grained molybdenum, two-step sintering and spark plasma sintering process were employed. The grain size of specimen by two-step sintering and spark plasma sintering was around and , respectively. Mechanical properties of ultra fine grained Mo with relative density of above 90% were significantly improved at room and high temperatures comparing to commercial bulk Mo of 99% relative density. This result was mainly explained by the grain size refinement due to diffusion-controlled sintering.
        4,000원
        50.
        2010.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the sintering behavior of (Nd, Dy)-Fe-B powder which fabricated by strip-casting was investigated with various sintering temperatures and holding times. The relative density over 99% could be obtained by both sintering at for 1h and sintering at for 20h. The grain growth was observed in sintered specimen at compared to one at . The isothermal sintering process below led to suppress grain growth showing the improved magnetic properties. The phase transformation of Nd-rich was confirmed by X-ray diffraction pattern.
        4,000원
        51.
        2010.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, a new, relatively simple fabrication method for forming a mesoporous Al(OH)3 film onAl substrates was demonstrated. This method, i.e., alkali surface modification, was simply comprised of dippingthe substrate in a 5×10-3M NaOH solution at 80oC for one minute and then immersing it in boiling waterfor 30 minutes. After alkali surface modification, a mesoporous Al(OH)3 film was formed on the Al substrate,and its chemical state and crystal structure were confirmed by XPS and TEM. According to the results of theXPS analysis, the flake-like morphology after the alkali surface modification was mainly composed of Al(OH)3,with a small amount of Al2O3. The mesoporous Al(OH)3 layer was composed of three regions: an amorphous-rich region, a region of mixed amorphous and crystal domains, and a crystalline-rich region near the Al(OH)3layer surface. It was confirmed that the stabilization process in the alkali surface modification stronglyinfluenced the crystallization of the mesoporous Al(OH)3 layer.
        4,000원
        52.
        2010.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a convergent heat treatment was performed in certain temperature regions in order to control the microstructures of Nd-rich phases and to reduce thermal stress on grain boundaries which could be caused during expansion and shrinkage of Nd-rich and phases. The difference of thermal expansion coefficient between and Nd-rich phases is the mechanism for convergent heat treatment. The Nd-rich phases which were located in junctions could penetrate into the grain boundaries between phases due to the difference of thermal expansion coefficient. Through the convergent heat treatment, the microcracks that were observed in cyclic heat treatment were not observed and coercivity was increased to 34.05 kOe at 8 cycles.
        4,000원
        53.
        2009.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        3-D shape soft magnetic composite parts can be formed by general compaction method of powder metallurgy. In this study, the results on the high density nanostructured Fe-Si/Fe composite prepared by a warm compaction method were presented. Ball-milled Fe-25 wt.%Si powder, pure Fe powder and Si-polymer were mixed and then the powder mixture was compacted at various temperatures and pressures. Pore free density of samples up to 95% theoretical value has been obtained. The warm compacted sample prepared at 650 MPa and 240℃ had highest compaction properties in comparison with other compacts prepared at 300, 400 MPa and room temperature and 120℃. The magnetic properties such as core loss, magnetization saturation and coercivity were measured by B-H curve analyzer and vibration sample magnetometer.
        4,000원
        54.
        2009.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Efforts to reduce noise in industrial application fields, such as automobiles, aircrafts, and plants have been gaining considerable attention while a sound proof wall to protect people from the noise has been intensively investigated by many researchers. In this study, our research group suggested creating a new sound proof wall composed of scrap aluminum chips and perforated plates in a commercial polyester sound proof wall, which was then successfully fabricated. This wall's sound absorption characteristics were measured by an impedance tube method. The sound absorption property was evaluated by measuring the Noise Reduction Coefficient (NRC) to the standard, ASTM C 423-90a. The noise reduction coefficient of the sound proof wall composed of 3.5 vol.% and 7.5 vol.% of scrap aluminum chips relatively increased to 5% and 8% compared to the commercial polyester sound proof wall. The scrap aluminum perforated plate also relatively increased to 13% compared to the commercial polyester sound proof wall.
        3,000원
        55.
        2009.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to investigate the effect of rapid solidification on the microstructure and the mechanical properties of Al-Zn-Mg system alloys, water atomization was carried out, since the water atomization beared the highest solidification rate among the atomization processes. The as atomized alloy powders consisted of fine grains less than 4 in diameter, and the second particles were not detected on XRD. The microstructure as solidified was maintained even after the spark plasma sintering at the heating rate of 50 K/min. On the other hand, lower rate of 20 K/min induced a formation of particles, resulting in strengthening of the matrix. The density was almost constant at the temperature above 698K. The sintering temperature above 698K had no effect on the strength of the sintered materials.
        4,000원
        56.
        2009.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To improve the filtration efficiency of porous materials used in filters, an extensive specific surface area is required to serve as a site for adsorption of impurities. In this paper, a method for creating a hybridized porous alloy using a powder metallurgical technique to build macropores in an Al-4 wt.% Cu alloy and subsequent surface modification for a microporous surface with a considerably increased specific surface area is suggested. The macropore structure was controlled by granulation, compacting pressure, and sintering; the micropore structure was obtained by a surface modification using a dilute NaOH solution. The specific surface area of surface-modified specimen increased about 10 times compare to as-sintered specimen that comprised of the macropore structure. Also, the surface-modified specimens showed a remarkable increase in micropores larger than 10 nm. Such a hybridized porous structure has potential for application in water and air purification filters, as well as membrane pre-treatment and catalysis.
        4,000원
        57.
        2009.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The influence of various surface morphologies on the mechanical strength of silicon substrates was investigated in this study. The yield for the solar cell industry is mainly related to the fracturing of silicon wafers during the manufacturing process. The flexural strengths of silicon substrates were influenced by the density of the pyramids as well as by the size and the rounded surface of the pyramids. To characterize and optimize the relevant texturing process in terms of mechanical stability and the fabrication yield, the mechanical properties of textured silicon substrates were investigated to optimize the size and morphology of random pyramids. Several types of silicon substrates were studied, including the planar type, a textured surface with large and small pyramids, and a textured surface with rounded pyramids. The surface morphology and a cross-section of the as-textured and fractured silicon substrates were investigated by scanning electron microscopy.
        4,000원
        58.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sintered Nd-Fe-B magnets have been widely used due to their excellent magnetic properties, especially for driving motors of hybrid and electric vehicles. The microstructure of Nd-Fe-B magnets strongly affects their magnetic properties, in particular the coercivity. Therefore, a post-sintering process like heat-treatment is required for improving the magnetic properties of Nd-Fe-B sintered magnets. In this study, cyclic heat treatment was performed at temperatures between and up to 16 cycles in order to control microstructures such as size and shape of the Nd-rich phase without grain growth of the phase. The 2 cycles specimen at this temperature range showed more homogeneous microstructure which leads to higher coercivity of 35 kOe than as-sintered one.
        4,000원
        60.
        2008.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        ZnS- composite is normally used for sputtering target. In recent years, high sputtering power for higher deposition rate often causes crack formation of the target. Therefore the target material is required that the sintered target material should have high crack resistance, excellent strength and a homogeneous microstructure with high sintered density. In this study, raw ZnS and ZnS- powders prepared by a 3-D mixer or high energy ball-milling were successfully densified by spark plasma sintering, the effective densification method of hard-to-sinter materials in a short time. After sintering, the fracture toughness was measured by the indentation fracture (IF) method. Due to the effect of crack deflection by the residual stress occurred by the second phase of fine , the hardness and fracture toughness reached to 3.031 GPa and , respectively
        4,000원
        1 2 3 4 5