검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 151

        44.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to investigate the suitable method for rapid establishment of grassland according to forage species, mixed pastures and installation of mesh at 35 degree angle of cutting area in the middle region of Korea. In agronomic characteristics after wintering, vegetation coverage of Tall fescue(TF) was 74% in monoculture, which was the highest among 3 forage crops. Meanwhile average vegetation coverages of monoculture and mixed pasture were 67 and 92% in treated of mesh, which were 4 and 18% higher than untreated of mesh, respectively. In botanical composition, TF of monoculture and Orchardgrass(OG) and TF oriented mixed were indicated over 94% forage coverage. Meanwhile forage coverages Kentucky bluegrass(KBG) and Red top(RT) of monoculture and Perennial ryegrass(PRG) oriented mixture were 89, 81 and 92% in treated of mesh, which were 7, 6 and 5% higher than untreated of mesh, respectively. In forage productivity, dry matter yield(DMY) of TF(12,537kg/ha) and KBG(11,897kg/ha) of monoculture were significant(p<0.05) higher than RT(9,604kg/ha). Meanwhile DMY of OG(12,227kg/ha), TF(12,823kg/ha) and PRG(11,871kg/ha) oriented mixed were not significant difference(p>0.05). In forage quality of monoculture, in the first year, crude protein of KBG was 13.6%, which was the highest among 3 forage species. Also neutral detergent fiber(NDF) of TF was 56.5%, which was the lowest among 3 forage species. In mixed pasture, in the second year, NDF and acid detergent fiber of PRG oriented mixed were 56.5 and 34.3%, respectively, which was the lowest among 3 mixed pasture. In conclusion, forage species TF was more suitable on initial rootage and continuous forage coverage, OG and TF oriented mixed were more suitable on continuous forage coverage. Also the installation of mesh showed positive effects on initial rootage and maintain forage ratio.
        4,500원
        45.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Yield prediction model for mixed pasture was developed with a shortage that the relationship between dry matter yield (DMY) and days of summer depression (DSD) was not properly reflected in the model in the previous research. Therefore, this study was designed to eliminate the data of the regions with distinctly different climatic conditions and then investigate their relationships DMY and DSD using the data in each region separately of regions with distinct climatic characteristics and classify the data based on regions for further analysis based on the previous mixed pasture prediction model. The data set used in the research kept 582 data points from 11 regions and 41 mixed pasture types. The relationship between DMY and DSD in each region were analyzed through scatter plot, correlation analysis and multiple regression analysis in each region separately. In the statistical analysis, DMY was taken as the response variable and 5 climatic variables including DSD were taken as explanatory variables. The results of scatter plot showed that negative correlations between DMY and DSD were observed in 7 out of 9 regions. Therefore, it was confirmed that analyzing the relationship between DMY and DSD based on each region is necessary and 5 regions were selected (Hwaseong, Suwon, Daejeon, Siheung and Gwangju) since the data size in these regions is large enough to perform the further statistical analysis based on large sample approximation theory. Correlation analysis showed that negative correlations were found between DMY and DSD in 3 (Hwaseong, Suwon and Siheung) out of the 5 regions, meanwhile the negative relationship in Hwaseong was confirmed through multiple regression analysis. Therefore, it was concluded that the interpretability of the yield prediction model for mixed pasture could be improved based on constructing the models using the data from each region separately instead of using the pooled data from different regions.
        4,000원
        46.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to evaluate the accuracy of equation being used to estimate the total digestible nutrients (TDN) of whole crop rice silage (WCRS) in sheep. To compare the observed and estimated TDN contents [estimated TDN content=87.57-(0.737×ADF)], two varieties of WCRS from Nokyang (NS) and Samgwang (SS) as forage and food source, respectively, were used as a treatment. Nine female Corriedale sheep (average body weight: 49.2±6.3 kg) were used as the experimental animals. The ewes were fed according to their nutrient requirements at the maintenance level. To check the difference between the observed and estimated TDN contents, one sample non-parametric t-test was applied. The CP, NFE and CF contents of the NS were 43.6, 74.2 and 64.2%, respectively, and that of the SS were 46.2, 58.1 and 44.9%, respectively. The observed and estimated TDN contents of the NS were 63.5 and 61.5%, where there was no significant difference. The observed and estimated TDN contents of the SS were 48.9 and 59.0%, where there was significant difference (p<0.05) This research confirmed the validity of TDN estimation equation being used for estimation of TDN of WCRS as forage source, but further research is recommended on the equation for estimating TDN contents of WCRS as food source.
        4,000원
        57.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was aimed to find yield prediction model of Italian ryegrass using climate big data and geographic information. After that, mapping the predicted yield results using Geographic Information System (GIS) as follows; First, forage data were collected; second, the climate information, which was matched with forage data according to year and location, was gathered from the Korean Metrology Administration (KMA) as big data; third, the climate layers used for GIS were constructed; fourth, the yield prediction equation was estimated for the climate layers. Finally, the prediction model was evaluated in aspect of fitness and accuracy. As a result, the fitness of the model (R2) was between 27% to 95% in relation to cultivated locations. In Suwon (n=321), the model was; DMY = 158.63AGD –8.82AAT +169.09SGD - 8.03SAT +184.59SRD -13,352.24 (DMY: Dry Matter Yield, AGD: Autumnal Growing Days, SGD: Spring Growing Days, SAT: Spring Accumulated Temperature, SRD: Spring Rainfall Days). Furthermore, DMY was predicted as 9,790±120 (kg/ha) for the mean DMY(9,790 kg/ha). During mapping, the yield of inland areas were relatively greater than that of coastal areas except of Jeju Island, furthermore, northeastern areas, which was mountainous, had lain no cultivations due to weak cold tolerance. In this study, even though the yield prediction modeling and mapping were only performed in several particular locations limited to the data situation as a startup research in the Republic of Korea.
        4,000원
        58.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to select a model showing high-levels of interpretability which is high in R-squared value in terms of predicting the yield in the mixed pasture using the factors of fertilization, seeding rate and years after pasture establishment in steps, as well as the climate as a basic factor. The processes of constructing the yield prediction model for the mixed pasture were performed in the sequence of data collection (forage and climatic data), preparation, analysis, and model construction. Through this process, six models were constructed after considering climatic variables, fertilization management, seeding rates, and periods after pasture establishment years in steps, thereafter the optimum model was selected through considering the coincidence of the models to the forage production theories. As a result, Model VI (R squared = 53.8%) including climatic variables, fertilization amount, seeding rates, and periods after pasture establishment was considered as the optimum yield prediction model for mixed pastures in South Korea. The interpretability of independent variables in the model were decreased in the sequence of climatic variables(24.5%), fertilization amount(17.8%), seeding rates(10.7%), and periods after pasture establishment(0.8%). However, it is necessary to investigate the reasons of positive correlation between dry matter yield and days of summer depression (DSD) by considering cultivated locations and using other cumulative temperature related variables instead of DSD. Meanwhile the another research about the optimum levels of fertilization amounts and seeding rates is required using the quadratic term due to the certain value-centered distribution of these two variables
        4,300원
        59.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this research was to determine the effects of harvesting frequency and fertilization levels on botanical composition, dry matter yield, and forage feed compositions of Alpine grassland at 800 m altitude. This research lasted for three years at National Alpine Agricultural Research Institute in Pyeongchang with two harvesting frequency schedules (two and three times annually) and two levels of fertilizer application (conventional level of fertilizer at 280-200-240 kg/ha and a lower level of fertilizer at 200-200-200 kg/ha for N, P2O5, and K2O). Mixture combinations with seeding rate (kg/ha) were as follows: Orchardgrass 18, Tall fescue 9, Timothy 8, Kentucky bluegrass 3, and Ladino Clover 2. The gramineae ratio ranged from 93.2 to 95.3%. Therefore, gramineae forage was considered as the dominant plant in this experiment. No significant (p>0.05) difference was observed in forage dry matter yield between the two harvesting frequency treatments (two times at 9.8 ton/ha and three times at 8.6 ton/ha). However, forage dry matter yield in the two times of harvesting frequency tended to be greater than that in the three times of harvesting frequency. Significantly (p<0.05) higher forage dry matter yield in the standard fertilization level group than the lower fertilization level group (9.8 ton/ha vs. 8.7 ton/ha) was observed. However, there was no significant (p>0.05) difference in forage crude protein concentration between the two harvesting frequency treatment groups, although the concentration in the group with three times of harvesting frequency tended to be higher. In contrast, crude fiber concentration in the group with two times of harvesting frequency tended to be higher, although the difference was not statistically significant (p>0.05). Crude protein, ether extract, crude fiber, and organic matter concentrations were not significantly (p>0.05) different between the two groups with different fertilization levels. Based on these results, it was concluded that the group with two times of harvesting frequency with conventional fertilization level might be proper for obtaining better forage productivity for Alpine grassland at 800 m altitude.
        4,000원
        1 2 3 4 5