검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 66

        61.
        2009.12 KCI 등재 서비스 종료(열람 제한)
        Recent studies have shown that alum addition to litter results in many environmental and economic advantages, such as reductions in metal runoff, lower ammonia emission and improved poultry performance. However, no research has been conducted to evaluate the effects of different types of alum on soluble metals in poultry litter. The objective of this study was conducted to investigate changes in soluble metal from poultry litter with different types of aluminum sulfate (alum) under laboratory condition. The treatments used in this study, which were mixed in the upper 1 cm of litter or sprayed onto the litter surface, were 4 g alum, 8 g alum, 8.66 g liquid alum, 17.3 g liquid alum, 11.2 g A7 (high acid alum), and 22.4 g A7 (high acid alum)/100 g litter. Applying different types of alum to poultry litter reduced (P<0.05) concentrations of soluble Fe (9 to 54%), Cu (9 to 49%) and Zn (11 to 40%), relative to untreated litter, whereas it increased Ca and Mg (P<0.05). Mean soluble Fe and Cu levels in poultry litter from different types of alum decreased in the order: 22.4 g A7 (54% and 49%) > 17.3 g liquid alum (48% and 42%) > 8 g alum (48% and 31%) > 4 g alum (28% and 10%) > 8.6 g liquid alum (10% and 9%) > 11.2 g A7 (8.6% and 9%). Additionally, the high reduction in soluble Zn concentration was 4 g alum (40%), followed by 8 g alum (26%), 22.4 g A7 (25%), 17.3 g liquid alum (23%), 8.66 g liquid alum (18%), and 11.2 g A7 (11%), respectively. In conclusion, the current studies suggest that treating poultry litter with different types of alum can be applied to reduce soluble metal (Fe, Cu, and Zn) and to develop a production to merchandise for poultry litter that would result in reduction in pollutants from these materials. Furthermore, in order to improve environmental management in the poultry industry, the use of alum, liquid alum and high acid alum all should be provided a valid means of reducing negative environmental impact.
        62.
        2009.07 KCI 등재 서비스 종료(열람 제한)
        The objectives of this study were to evaluate the effects of chemical additives on total phosphorus (TP), soluble reactive phosphorus (SRP), and total volatile fatty acids (total VFAs) in hanwoo slurry. The treatments in this study were ferrous sulfate, alum, and aluminum chloride, and applied at the rate of 0, 0.5, and 1.0 g/25 g of hanwoo slurry. All of the chemical treatments significantly lowered TP (11 to 53% of the untreated control), SRP (41 to 99.9% of the untreated control), and total VFAs (22 to 48.5% of the untreated control) by reducing hanwoo slurry pH (3.42 to 6.86). Among these chemical amendments, addition of 0.5 g ferrous sulfate, alum, and aluminum chloride to hanwoo slurry were the best results evaluated on farms with respect to reducing negative environmental impacts. In conclusion, the results of this study indicate that the use of chemical amendments should be considered in the development of best management practices (BMPs) for the hanwoo industries.
        63.
        2009.07 KCI 등재 서비스 종료(열람 제한)
        To determine changes in nitrogen contents and optimal rates as N fertilizer, we investigated nitrogen characteristics in the slurry in the respond to the application of 0, 0.5, and 1 g of ferrous sulfate or alum /25g of dairy slurry. Additions of ferrous sulfate or alum increase total nitrogen, inorganic nitrogen, available nitrogen, and predicted available nitrogen contents in dairy slurry, resulting in reduction in pH. The best results were found in the treatment with 0.5 g of ferrous sulfate or alum /25 g of dairy slurry. In conclusion, the use of ferrous sulfate or alum as on-farm amendment to dairy slurry should be represented an alternative to improve N in dairy slurry.
        64.
        2009.05 KCI 등재 서비스 종료(열람 제한)
        The goals of this study were conducted to investigate the effects of applying liquid aluminum chloride (AlCl3) to rice hulls on pH and soluble reactive P (SRP). A total of 800 broiler chicks (4 treatments × 4 replicates × 50 birds) were housed into 16 floor pens in a single house for 5 weeks. The treatments were divided into 4 groups: control, 100 g of liquid AlCl3/kg of rice hulls, 200 g of liquid AlCl3/kg of rice hulls, and 300 g of liquid AlCl3/kg of rice hulls. Liquid AlCl3 was sprayed on the rice hulls surface at a rate of 100 g, 200 g, and 300 g liquid AlCl3 per kg rice hull. pH values and SRP contents were significantly decreased (P<0.05) with the increased liquid AlCl3 levels in comparison with control. However, no significant differences in SRP contents were observed among all treatments at 3 and 4 weeks. Applying 100 g, 200 g, and 300 g liquid AlCl3 to rice hulls reduced SRP contents by 18, 25, and 52% for 5 weeks, respectively, compared with the controls. In conclusion, these results suggest that using liquid AlCl3 on rice hulls should be promising for reducing water contamination and resulted in a reduction in SRP contents, which reduced pH.
        65.
        2008.02 KCI 등재 서비스 종료(열람 제한)
        The objective of this study was conducted to evaluate the effects of poultry litter amendments on pH and soluble reactive phosphorus (SRP) in poultry litter. Two laboratory studies were conducted for 42 d in Exp. 1 and for 10 d in Exp. 2, respectively. The poultry litter was treated with various amendments which included 4 g fly ash and 4 g AlCl3 (AlCl₃.6H₂O)/100 g litter in Exp. 1 and 4 g alum(Al₂(SO₄)₃.14H₂O), 8 g alum, 8.66 g liquid alum, and 17.3 g liquid alum/100 g litter in Exp. 2; untreated litter served as controls. There were no differences in pH between control and T1(4 g fly ash) and SRP contents between T1(4 g fly ash) and T2(4 g AlCl₃) in Exp. 1. A significant difference in pH and SRP contents in Exp. 2 was observed among all treatments(P< 0.05). In experiment 1, T1(4 g fly ash) and T2(4 g AlCl₃) at 42 d decreased SRP in litter by 47.1% and 62.6% of that from litter alone, repectively. In experiment 2, T1(4 g alum), T2(8.66 g liquid alum), T3(8 g alum), and T4(17.3 g liquid alum) treatments at 10 days reduced SRP contents by up to 36.2%, 62.9%, 87.0%, and 83.9%, respectively, when compared with the controls. Decrease in SRP contents was chiefly associated with reduction in litter pH. These results indicate that use of various litter amendments to limit P solubility has potential and should be pursued as a means of reducing soluble reative phosphorus during short term.
        66.
        2008.02 KCI 등재 서비스 종료(열람 제한)
        The objectives of this study were conducted to determine the effects of two chemical amendments on volatile fatty acids (VFA) and nitrogen contents in poultry litter after broiler chicks were raised in poultry houses for 6 weeks. Two different additives were applied as a top dressing to the litter at a rate of AlCl₃∙6₂2O (200 g)+CaCO₃ (50 g) or Alum (200 g)+CaCO₃ (50 g)/kg of rice bran; untreated litter served as controls. Application of AlCl₃+CaCO₃ and Alum+CaCO₃ reduced total VFA contents by 67% and 51% at 6 weeks, respectively, compard to the control groups. The decrease in litter pH with two chemical treatments results in decreased proportion of VFA and increased nitrogen contents of the litter. These results indicate that treating AlCl₃+CaCO₃ and Alum+CaCO₃ to poultry litter offers the potential for reducing an environmental impact.
        1 2 3 4