검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 22

        21.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        In this study, phenotypic distribution of 15 major fruit quality traits were analyzed using 252 progenies derived from a cross between ‘Tano Red’ (seed) and ‘Ruby Seedless’ (seedless), to obtain basic data for improving the breeding efficiency of grapevine cultivars. Berry skin color was dark red-violet in 46.4% of the progenies, which is the color of ‘Tano Red’ and ‘Ruby Seedless’, and berry shape was elliptic in 48.4%. Most of the progenies were very juicy with soft flesh, and closely related to the characteristics of ‘Tano Red’. Seeds were well developed in 67.1% of the progenies, rudimentary in 30.1%, and 2.8% were seedless, with seed weight being less than 0.15 g in 84.9% of the progenies. Among the 15 fruit quality traits assessed, bunch density, ease of berry detachment from pedicel, berry weight, berry seed number, berry longitudinal diameter, berry transverse diameter, berry soluble solids, and berry acidity showed normal distributions. Heritability of berry weight, berry longitudinal diameter, berry transverse diameter, berry soluble solids, and berry acidity was 0.89, 0.82, 0.78, 0.86, and 0.93, respectively. Berry weight was positively correlated with seed weight (r = 0.486**), presence of seeds (r = 0.483**), and seed number (r = 0.211**). Seed weight significantly increased with presence of seeds (r = 0.607**) and seed number (r = 0.725**). In addition, presence of seeds was positively correlated with seed number (r = 0.319**). These results could be useful for the identification of quantitative trait loci associated with fruit quality to assist in grapevine breeding.
        22.
        2015.09 KCI 등재 서비스 종료(열람 제한)
        The study was conducted on the effects of time of defoliation on fruit quality of pear (Pyrus pyrifolia Nakai) trees, managing with low-pesticides, and regrowth of stem cuttings in vitro. Treatments included for 40% of uniform defoliation at early-August, end-August, and early-September, as well as control (no defoliation). Defoliation at early-September and control increased growth of water sprouts as well as concentrations of carbohydrates, total nitrogen, and free sugar in one-year old shoots. Defoliation at early-September and control increased fruit yield and mean fruit weight, with high soluble solids content and fruit surface color of a* observed for both defoliation at end-August and early-September. Defoliation at early-August increased rates of electrolyte leakage in stem cuttings at -18℃ in vitro. There were no significantly different for germination rates of the cuttings between the treatments at -18 and -21℃ in vitro, with the highest germination of the cuttings observed for defoliation at early-September and control at -27℃. Therefore, orchard management should be performed to be minimized for defolia-tion of the spur leaves until end-August, causing from precipitation and pests.
        1 2