A ship’s automatic steering system is the basis for addressing control difficulties related to course-changing and course-keeping during navigation through heading angle control, and is a link in realizing unmanned and autonomous ships. This study proposes a robust RCGA-based linear active disturbance rejection controller (LADRC) design method considering environmental disturbances, measurement noise, and model uncertainties in designing a ship heading controller for use when the ship is sailing. The LADRC consisted of a transient profile, a linear extended state observer, and a PD controller. The control gains in the LADRC with the linear extended state observer were adjusted by RCGAs to minimize the integral of the time-weighted absolute error (ITAE), which is an evaluation function of the control system. The proposed method was applied to ship heading control, and its effectiveness was validated by comparing the propulsive energy loss between the proposed method and a conventional linear PD controller. The simulation results showed that the proposed method had the advantages of lower propulsive energy loss, more robustness, and higher tracking precision than the conventional linear PD controller.
가스터빈 기관은 우주항공, 발전 플랜트뿐만 아니라 해상운송 분야에 사용되는 원동기로서 매우 중요한 역할을 하고 있다. 그러나 그 구조가 복잡하고 연소과정에서 시간지연 요소가 포함되어 있어 가스터빈 기관을 잘 제어할려면 정교한 수학적 모델링이 필요하다. 본 논문 에서는 가스터빈 기관의 주요 구성품인 가스발생기, PLA 액추에이터, 미터링 밸브에 대한 모델링 기법을 설명한다. 또한, 가스터빈 기관의 시 운전 데이터를 기초로 몇 가지 정상상태 때의 동작점에서 서브모델을 구하고, 각 서브모델에 대해 비선형 비례적분미분 제어기를 설계하여 기 관의 속도를 제어하는 방법을 제안한다. 제안하는 비선형 제어기는 비선형 함수로 구현되는 3가지 이득을 사용한다. 비선형 제어기의 파라미터 는 제어시스템의 목적함수를 최소화하는 관점에서 실수코딩 유전자알고리즘으로 동조한다. 제안한 방법은 가스터빈 기관에 적용하고 시뮬레이 션을 실시하여 그 유효성을 확인한다.
Since fuzzy controllers are nonlinear, it is more difficult to set the controller gains and to analyse the stability compared to conventional PID controllers. This paper proposes a fuzzy PD+I controller for tracking control which uses a linear fuzzy inference(product-sum-gravity) method based on a conventional linear PID controller. In this scheme the fuzzy PD+I controller works similar to the control performance as the linear PD plus I(PD+I) controller. Thus it is possible to analyse and design an fuzzy PD+I controller for given systems based on a linear fuzzy PD controller. The scaling factors tuning scheme, another topic of fuzzy controller design procedure, is also introduced in order to fine performance of the fuzzy PD+I controller. The scaling factors are adjusted by a real-coded genetic algorithm(RCGA) in off-line. The simulation results show the effectiveness of the proposed fuzzy PD+I controller for tracking control problems by comparing with the conventional PID controllers.