검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 129

        81.
        2011.10 구독 인증기관·개인회원 무료
        Bacterial contamination reduces the semen quality, semen preservation, and cause of disease spread as well. Sperm fertility is essential factor of reproductive performance in swine. Sperm fertility is affected by semen quality such as sperm motility, abnormality, morphology, and rate of bacterial contamination. This study was conducted to determine the relationship between elapsed time after semen preservation on the changes of bacteria and semen quality. Semen was diluted with BTS extender without antibiotic for 7 days and sperm parameter and fertility were measured. Sperm motility was measured by CASA and total bacteria number was counted after 22 24 hr incubation from counting agar plate in which sperm dilute to 10 106 in 0.9% saline solution and inoculate to agar. Acrosomal integrity was measured by Chlortetracycline (CTC) staining. CTC patterns were uniform fluorescence over the whole head (pattern A), characteristic of uncapacitated acrosome-intact spermatozoa; fluorescence-free band in the post-acrosomal region (pattern B), characteristic of capacitated acrosome-intact spermatozoa; and almost no fluorescence over the whole head except for a thin band in the equatorial segment (pattern C), characteristic of acrosome reacted spermatozoa. Total number of bacteria was significantly increased (p<0.0001) 3 days after preservation. Sperm motility, viability, and morphological abnormality on elapsed time after preservation were lower from 5 (77.24±6.47, p<0.001) and 7 days (77.24±6.47, p< 0.001) after preservation compared to 1 (15.71±7.18) and 3 days(18.39±7.22) after preservation, respectively. Sperm viability was significantly lower (53.25±35.03, p<0.0001) at 7 days after preservation. Mohological abnormality of sperm was lower (p<0.001) at 1 (15.71±7.18) and 3 (18.39±7.22) days compared to (5 21.84±7.91) and 7 (22.59± 9.93) days after preservation. Acrosomal integrity and capacitation rate (pattern A) were significantly lower (p<0.001) from 5 days after preservation.
        82.
        2011.10 구독 인증기관·개인회원 무료
        Acteoside (verbascoside) is a typical phenylethanoid glycoside, extracted from various plants. It has various biological functions such as anti-oxidant, anti-inflammation, and anti-hypertension. Specially, it was powerful anti-oxidants either by direct scavenging of reactive oxygen and nitrogen species, or by acting as chain-breaking peroxyl radical scavengers. We examined the role of acteoside in IVM medium on the morphological progress of meiosis, developmental competence, and ROS in porcine oocytes. And we investigated effect of acteoside on the oocytes condition represented by cytoplasmic maturation by homogeneous distribution and formation of cytoplasmic organelles and regulation of apoptosis-related genes. The selected COCs were cultured in TCM-199 with various concentration of acteoside: 0 (control), 10, 30, and 50 μM. After 22 h of maturation with hormones, the oocytes were washed twice in a fresh maturation medium before being cultured in hormone-free medium for additional 22 h. The oocytes maturation rates of supplemented with acteoside were no significantly different compared with control group (71.13, 75.96, 72.95 and 73.68%, respectively). Level of ROS was significantly decreased in acteoside treated group. Furthermore, the parthenogenetic blastocyst rate was significantly improved in 10 μM acteoside treated group compared with control group (40.03 vs. 22.95%). During IVM, 10 μM acteoside treated oocytes showed that the mitochondria and lipid droplet were smaller and homogeneous distribution in cytoplasm compare with non-treated control oocytes. And reverse transcription polymerase chain reaction (RT-PCR) witarthenogenetic blstocysts revealed that acteoside increased the anti-apoptoticgenes, otherwise reibued pro-apoptotic genes. In conclusion, our results represents that addition of acteoside to the IVM medium has a beneficial effect in physiology of porcine oocytes such as viability and activation, providing a improved method for porcine oocytes in vitro.
        94.
        2005.09 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was the analysis of sperm ability in Specific Pathogen Free (SPE) miniature pig for production of bio-organ. The collected semen was diluted with extender and stored at 17℃ for up to 7 days. The semen samples were evaluated at 0, 1, 3, 5, and 7 days of storage for analysis of sperm ability. Sperm ability was evaluated by examining viability, progressive motility, sperm abnormality and intensity of the sperm membrane. Also, the semen was processed according to the convenient freezing method, and frozen-thawed sperm was evaluated by examining viability, capacitation and acrosome reaction using chlortetracycline (CTC) staining. Motility of spermatozoa of SPF miniature pig was significantly (P<0.05) lower on 3 days or later compared to the Duroc, Yorkshire and Landrace in domestic boar. The percentage of abnormal spermatozoa of Landrace were significantly (P<0.05) higher than in SPF miniature pig, Duroc and Yorkshire that had a similar percentage on 5 or 7 days of sperm storage. The percentage of spermatozoa with coiled tail decreased during the storage period but there were no significant difference. On the other hand, viability of frozen-thawed spermatozoa had a significantly (P<0.05) lower in SPF miniature pig than in other domestic boars. CTC patterns had no significant difference, but SPF miniature pig had higher percentage of capacitated spermatozoa and lower percentage of acrosome-reacted it than domestic boars. Therefore, this study suggest that it is necessary to develop the suitable extender and freezing methods methods for the high viable rate and fertilizing ability in vitro.
        4,000원
        1 2 3 4 5