검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2013.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Various features of the existing perturbations in the Earth’s spin rotation are investigated for the recent and most reliable data by spectral analysis, filtering, and comparison with idealized model. First, theory of Earth’s spin rotational perturbation is briefly re-derived in the Earth-fixed coordinate frame. By spectral windowings, different periodic components of the length of day perturbation are separated, and their characters and excitations are discussed. Different periodic components of polar motion are acquired similarly and described with further discussion of their excitations. Causes of the long time trends of both the length of day and polar motion are discussed. Three possible causes are considered for the newly discovered 490-day period component in the polar motion.
        2.
        2012.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        In this study, we compared the precipitable water vapor (PWV) data derived from the radiosonde observation data at Sokcho Observatory and the PWV data at Sokcho Global Positioning System (GPS) Observatory provided by Korea Astronomy and Space Science Institute, for the years of 2006, 2008, 2010, and analyzed the radiosonde seasonal, diurnal bias according to radiosonde sensor types. In the scatter diagram of the daytime and nighttime radiosonde PWV data and the GPS PWV data, dry bias was found in the daytime radiosonde observation as known in the previous study. Overall, the tendency that the wet bias of the radiosonde PWV increased as the GPS PWV decreased and the dry bias of the radiosonde PWV increased as the GPS PWV increased. The quantitative analysis of the bias and error of the radiosonde PWV data showed that the mean bias decreased in the nighttime except for 2006 winter, and in comparison for summer, RS92-SGP sensor showed the highest quality.
        3.
        2012.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        In this study, global positioning system (GPS)-derived precipitable water vapor (PWV) and microwave radiometer(MWR)-measured integrated water vapor (IWV) were compared and their characteristics were analyzed. Comparingthose two quantities for two years from August 2009, we found that GPS PWV estimates were larger than MWR IWV. Theaverage differenceover the entire test period was 1.1 mm and the standard deviation was 1.2 mm. When the discrepanciesbetween GPS PWV and MWR IWV were analyzed depending on season, the average difference was 0.7 mm and 1.9mm in the winter and summer months, respectively. Thus, the average difference was about 2.5 times larger in summerthan that in winter. However, MWR IWV measurements in the winter months were over-estimated than those in the summermonths as the water vapor content got larger. The results of the diurnal analysis showed that MWR IWV was underestimatedin the daytime, showing a difference of 0.8 mm. In the early morning hours, MWR IWV has a tendency to beover-estimated, with a difference of 1.3 mm with respect to GPS PWV.