검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15

        1.
        2013.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, we systematically investigated the effect of Mn addition on nitrogenation behavior and magnetic properties of Sm-Fe powders produced by reduction-diffusion process. Alloy powders with only single phase were successfully produced by the reduction-diffusion process. The coercivity of powder rapidly increased during nitrogenation and reached the maximum of 637 Oe after 16 hours. After further nitrogenation, it decreased. In contrast, the coercivity of powder gradually increased during nitrogenation for 24 hours. The coercivity of powder was higher than that of powder at the same condition of nitrogenation. It was considered that the Mn addition facilitates the nitrogenation of powder and enhances the coercivity.
        4,000원
        3.
        2009.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To produce alloy powders with only SmFe single phase by reduction-diffusion (R-D) method, the effect of excess samarium oxide on the preparation of Sm-Fe alloy powder during R-D heat treatment was studied. The quantity of samarium oxide was varied from 5% to 50% whereas iron and calcium were taken 0% and 200% in excess of chemical equivalent, respectively. The pellet type mixture of samarium, iron powders and calcium granulars was subjected to heat treatment at 1100 for 5 hours. The R-D treated pellet was moved into deionized water and agitated to separate Sm-Fe alloy powders. After washing them in deionized water several times, the powders were washed with acetic acid to remove the undesired reaction products such as CaO. By these washing and acid cleaning treatment, only 0.03 wt% calcium remained in Sm-Fe alloy powders. It was also confirmed that the content of unreacted -Fe in SmFe matrix gradually decreased as the percentage of samarium oxide is increased. However, there was no significant change above 40% excess samarium oxide.
        4,000원
        6.
        2005.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        1990년도 초반에 개발되어 나노분말의 제조 공정으로 집중적으로 연구되어온 화학기상응축공정은 고강도용 나노분말 소재이외에 기능성 자성재료로의 응용에 주로 이용되어 왔다. 최근에는 이러한 응용이외에 나노분말의 표면을 다양한 이종 소재로 응용하고자하는 나노캡슐(혹은 core/shell)화 제조 공정으로 진보되어 다양한 합금 시스템으로 발전하게 되었다. 특히 최근 Particles 2005, Surface Modification in Particle Tech
        4,000원
        7.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Using the nano Fe powders having 50 nm in diameter, Fe compact bodies were fabricated by injec-tion molding process. The relationship between microstructure and material properties depending on the volume ratio of powder/binder and sintering temperature were characterized by SEM, TEM techniques. In the compact body with the volume percentage ratio of 45(Fe powder) : 55(binder), which was sintered at the relative density was about and the values of volume shrinkage and hardness were about and 242.0 Hv, respec-tively. Using the composition of 50(Fe powder) : 50(binder) and sintered at the values of relative density, volume shrinkage and hardness of Fe sintered bodies were and 152.8 Hv, respectively. They showed brittle fracture mode due to the porous and fine microstructure.
        4,000원
        8.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nano sized FeAl intermetallic particles were successfully synthesized by plasma arc discharge pro-cess. The synthesized powders shouted core-shell structures with the particle size of 10-20 nm. The core was metallic FeAl and shell was composed of amorphous Because of the difference of Fe and Al vapor pressure during synthesis, the Al contents in the nanoparticles depended on the Al contents of master alloy.
        4,000원
        9.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe(C) nanocapsules were prepared by the chemical vapor condensation(CVC) process using the pyrolysis of iron Their characterizations were studied by means of X-ray diffraction, X-ray photoelectron spectrometer and transmission electron microscopy. The long-chained Fe(C) nanocapsules hav-ing the mean size of under 70 nm could be obtained below in different gas flow rates. The particle size of the powders was increased with increasing decomposition temperature, but it was decreased with increasing CO gas flow rate. The Fe powders produced at consisted of three layers of phases, but it had two phase core-shell structure which consited of phase of core and graphite of shell at
        4,000원
        10.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Iron-carbon nanocapsules were synthesized by plasma arc discharge (PAD) process under various atmosphere of methane, argon and hydrogen gas. Characterization and surface properties were investigated by means of HRTEM, XRD, XPS and Mossbauer spectroscopy. Fe nanocapsules synthesized were composed of three phases with core/shell structures. The surface of nanocapsules was covered by the shell of graphite phase in the thickness of nm.
        4,000원
        11.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Fe-Ni compact bodies were fabricated using Fe-Ni mixed powders with 50 nm in diameter by injection molding process. The relationship between microstructure and material properties was characterized with respect to the volume ratio of powder/binder and sintering temperature with SEM and TEM. In the compact body having the volume percent ratio of 45(Fe-Ni) : 55(binder), which was sintered at the values of relative density and hardness were low about and 277.1 Hv, respectively. Using the composition of 50(Fe Ni) : 50(binder) and sintered at the values of relative density and hardness were respec-tively. The grain size of sintered bodies strongly depended on the sintering temperature. In both samples sintered at the average grain sizes were about 150 nm and 500 nm in diameter, respectively.
        4,000원