거저리는 식품으로 사용되기 때문에 유충기가 오래 지속되면 더 좋다. 반면에 거저리의 개체수 유지를 위 해 성장을 가속화하기 위해서는 유충이 빨리 성충이 되면 더 좋다. 이 연구에서는 개체군 밀도가 거저리의 발달 시 간에 미치는 영향을 구명하였다. 이를 위해 상단 7 cm, 하단 5 cm, 높이 3 cm 크기의 용기를 사용했다. 거저리는 용기 당 1, 2, 5, 10, 20마리의 밀도로 용기에서 서식하였다. 용기에 밀기울 1 g을 넣고 거저리의 먹이 여부에 따라 라벨을 붙였다. 실험은 세 번 반복되었다. 모든 실험에서 개체군 밀도가 높을수록 유충에서 번데기로의 변환 시간이 짧았 지만 번데기에서 성충으로 변환되는 시간은 크게 다르지 않았다. 또한 먹이가 있는 그룹에서 번데기로의 변환 시간 이 단축되었지만, 성충으로 변환되는 시간에는 차이가 없었다. 이 연구 결과는 유충기를 연장하기 위해 더 낮은 밀 도가 필요하고 더 빠른 속도로 성충이 필요하다면 밀도가 더 높아야 한다는 것을 보여주었다. 결론적으로 거저리의 발달 시간은 개체수 밀도에 의해 제어할 수 있을 것이다.
This study prepares highly porous carbon (c-fPI) for lithium-ion battery anode that starts from the synthesis of fluorinated polyimide (fPI) via a step polymerization, followed by carbonization. During the carbonization of fPI, the decomposition of fPI releases gases which are particularly from fluorine-containing moiety (–CF3) of fPI, creating well-defined microporous structure with small graphitic regions and a high specific surface area of 934.35 m2 g− 1. In particular, the graphitic region of c-fPI enables lithiation–delithiation processes and the high surface area can accommodate charges at electrolyte/electrode interface during charge–discharge, both of which contribute electrochemical performances. As a result, c-fPI shows high specific capacity of 248 mAh g− 1 at 25 mA g− 1, good rate-retention performance, and considerable cycle stability for at least 300 charge–discharge cycles. The concept of using a polymeric precursor (fPI), capable of forming considerable pores during carbonization is suitable for the use in various applications, particularly in energy storage systems, advancing materials science and energy technologies.
This study focused on the genomic analysis of Anopheles kleini and Anopheles pullus, both vectors of vivax malaria within the Anopheles Hyrcanus group. Using Illumina NovaSeq600 and Oxford Nanopore platforms, we identified 126 and 116 contigs, along with 40,420 and 32,749 genes from An. kleini and An. pullus, respectively. The assembled genome sizes were 282 Mb for An. kleini and 247 Mb for An. pullus, which are within a similar range to the sizes previously estimated by digital PCR (249 Mb and 226 Mb). We are currently also estimating the genome sizes of other Anopheles spp. and manually curating key genes determining vectorial capacity.
주변 국가인 태국, 캄보디아, 베트남, 라오스 등에서 벼멸구(Nilaparvata lugens)와 흰등멸구(Sogatella furcifera)를 채집하던 중, 벼멸구와 형태가 아주 유사한 이삭멸구(N. muiri)와 벼멸구붙이(N. bakeri), 그리고 흰등 멸구와 형태가 아주 유사한 흰등멸구붙이(S. kolophon), 피멸구(S. vibix) 그리고 애멸구(Laodelphax striatellus)가 동시에 채집이 되는 등 형태적 차이점이 거의 없어 전문가도 쉽게 구분하지 못하는 문제가 있음이 확인되었다. 따라서 형태가 유사한 상기 멸구류의 종 동정을 확실히 할 수 있는 PCR용 프라이머의 개발을 위해 벼멸구 및 흰등멸구의 미토콘드리아 내 COI 영역을 특이적으로 검출할 수 있는 프라이머 세트를 제작하고 종 동정 효과를 확인하였다.
In 2022, research for native prokaryotic species in Korea reported 10 unrecorded bacterial strains affiliated to phyla Actinomycetota, Bacillota, and Pseudomonadota. The strains formed monophyletic clades with the most closely related species (with ≥98.7% sequence similarity) in the 16S rRNA gene sequencing. Among them, four species of the phylum Actinomycetota, two species of the phylum Bacillota, and four species of the phylum Pseudomonadota have not been reported in Korea, suggesting unrecorded species in Korea. Information on strains such as Gram staining reaction, colony and cell morphology, biochemical characteristics, and isolation sources were provided in the species description.
High-entropy alloys (HEAs) are attracting attention because of their excellent properties and functions; however, they are relatively expensive compared with commercial alloys. Therefore, various efforts have been made to reduce the cost of raw materials. In this study, MIM is attempted using coarse equiatomic CoCrFeMnNi HEA powders. The mixing ratio (powder:binder) for HEA feedstock preparation is explored using torque rheometer. The block-shaped green parts are fabricated through a metal injection molding process using feedstock. The thermal debinding conditions are explored by thermogravimetric analysis, and solvent and thermal debinding are performed. It is densified under various sintering conditions considering the melting point of the HEA. The final product, which contains a small amount of non-FCC phase, is manufactured at a sintering temperature of 1250oC.
Kori-1, the nuclear power plants in South Korea, first started operation in April 1978 and was suspended permanently in 2017. The saturation rate time of spent nuclear fuel generated by major nuclear power plants operating in Korea are getting closer. If we fail to dispose spent nuclear fuel, which is equivalent to high-level radioactive waste, the nuclear power plants will have to be shutdown. High-level radioactive waste is permanently disposed through a deep geological disposal system because it contains long-term half-life nuclides and emits high energy. To select the deep geological disposal site and construct the disposal facilities, it is necessary to establish appropriate regulatory policies accordingly. The status of database construction in OECD-NEA, NRC, SITEX, and IAEA, which provides safety regulations for deep geological disposal system, stipulates each requirement for dismantling nuclear power plants. However, details such as specific figures are not specified, and guidelines for the disposal of high-level radioactive wastes are not clearly distinguished. In Korea, the CYPRUS program, an integrated database system, has been developed to support comprehensive performance evaluation for high-level waste disposal. However, due to several difficult situations, maintenance and upgrades have not been performed, so the research results exist only in the form of raw data and the new research results have not been reflected. Other than that, there is no preemptive basis for regulating the deep geological disposal system. With real-time database, we can develop a regulatory system for the domestic deep disposal system by systematically analyzing the regulatory condition and regulatory case data of international organizations and foreign leading countries. The database system processed and stored primary data collected from nuclear safety reports and other related data. In addition, we used relational database and designed table to maximize time and space efficiency. It is provided in the form of a web service so that multiple users can easily find the data they want at the same time. Based on these technologies, this study established a database system by analyzing the legal systems, regulatory standards, and cases of major foreign leading countries such as Sweden, Finland, the United States, and Japan. This database aims to organize data for each safety case component and further prepare a safety regulatory framework for each stage of development of disposal facilities suitable for the domestic environment.