검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2023.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        It is difficult to distinguish the pure signal produced by an orbiting planetary companion around giant stars from other possible sources, such as stellar spots, pulsations, or certain activities. Since 2003, we have obtained radial (RV) data from evolved stars using the high-resolution, fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at the Bohyunsan Optical Astronomy Observatory (BOAO). Here, we report the results of RV variations in the binary star HD 135438. We found two significant periods: 494.98 d with eccentricity of 0.23 and 8494.1 d with eccentricity of 0.83. Considering orbital stability, it is impossible to have two companions in such close orbits with high eccentricity. To determine the nature of the changes in the RV variability, we analyzed indicators of stellar spot and stellar chromospheric activity to find that there are no signals related to the significant period of 494.98 d. However, we calculated the upper limits of rotation period of the rotational velocity and found this to be 478–536 d. One possible interpretation is that this may be closely related to the rotational modulation of an orbital inclination at 67–90 degrees. The other signal corresponding to the period of 8494.1 d is probably associated with a stellar companion orbiting the giant star. A Markov Chain Monte Carlo (MCMC) simulation considering a single companion indicates that HD 135438 system hosts a stellar companion with 0.57+0.017 −0.017 M⊙ with an orbital period of 8498 d.
        4,000원
        2.
        2023.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This paper is written as a follow-up observations to reinterpret the radial velocity (RV) of HD 36384, where the existence of planetary systems is known to be ambiguous. In giants, it is, in general, difficult to distinguish the signals of planetary companions from those of stellar activities. Thus, known exoplanetary giant hosts are relatively rare. We, for many years, have obtained RV data in evolved stars using the high-resolution, fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at the Bohyunsan Optical Astronomy Observatory (BOAO). Here, we report the results of RV variations in the M giant HD 36384. We have found two significant periods of 586 d and 490 d. Considering the orbital stability, it is impossible to have two planets at so close orbits. To determine the nature of the RV variability variations, we analyze the HIPPARCOS photometric data, some indicators of stellar activities, and line profiles. A significant period of 580 d was revealed in the HIPPARCOS photometry. H𝛼 EW variations also show a meaningful period of 582 d. Thus, the period of 586 d may be closely related to the rotational modulations and/or stellar pulsations. On the other hand, the other significant period of 490 d is interpreted as the result of the orbiting companion. Our orbital fit suggests that the companion was a planetary mass of 6.6 𝑀J and is located at 1.3 AU from the host.
        4,000원
        3.
        2023.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We have been conducting a exoplanet search survey using Bohyunsan Observatory Echelle Spectrograph (BOES) for the last 18 years. We present the detection of exoplanet candidate in orbit around HD 18438 from high-precision radial velocity (RV) mesurements. The target was already reported in 2018 (Bang et al. 2018). They conclude that the RV variations with a period of 719 days are likely to be caused by the pulsations because the Lomb-Scargle periodogram of HIPPARCOS photometric and Hα EW variations for HD 18438 show peaks with periods close to that of RV variations and there were no correlations between bisectors and RV measurements. However, the data were not sufficient to reach a firm conclusion. We obtained more RV data for four years. The longer time baseline yields a more accurate determination with a revised period of 803 ± 5 days and the planetary origin of RV variations with a minimum planetary companion mass of 21 ± 1MJup. Our current estimate of the stellar parameters for HD 18438 makes it currently the largest star with a planetary companion.
        4,000원
        6.
        2015.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        There is much observational evidence that active star formation is taking place in the Hii regions Sh 2-255 – 257. We present a photometric study of this star forming region (SFR) using imaging data obtained in passbands from the optical to the mid-infrared, in order to study the star formation process. A total of 218 members were identified using various selection criteria based on their observational properties. The SFR is reddened by at least E(B −V ) = 0.8 mag, and the reddening law toward the region is normal (RV = 3.1). From the zero-age main sequence fitting method it is confirmed that the SFR is 2.1 ± 0.3 kpc from the Sun. The median age of the identified members is estimated to be about 1.3 Myr from a comparison of the Hertzsprung-Russell diagram (HRD) with stellar evolutionary models. The initial mass function (IMF) is derived from the HRD and the near-infrared (J, J −H) color-magnitude diagram. The slope of the IMF is about 􀀀 = −1.6 ± 0.1, which is slightly steeper than that of the Salpeter/Kroupa IMF. It implies that low-mass star formation is dominant in the SFR. The sum of the masses of all the identified members provides the lower limit of the cluster mass (169M⊙). We also analyzed the spectral energy distribution (SED) of pre-main sequence stars using the SED fitting tool of Robitaille et al., and confirm that there is a significant discrepancy between stellar mass and age obtained from two different methods based on the SED fitting tool and the HRD.
        4,500원
        8.
        2014.04 구독 인증기관·개인회원 무료