검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 183

        5.
        2023.11 구독 인증기관·개인회원 무료
        Nuclear power plants use ion exchange resins to purify liquid radioactive waste generated while operating nuclear power plants. In the case of PHWR, ion exchange resins are used in heavy water and dehydration systems, liquid waste treatment systems, and heavy water washing systems, and the used ion exchange resins are stored in waste resin storage tanks. The C-14 radioactivity concentration in the waste resin currently stored at the Wolseong Nuclear Power Plant is 4.6×106 Bq/g, exceeding the low-level limit, and if all is disposed of, it is 1.48×1015 Bq, exceeding the total limit of 3.04×1014 Bq of C-14 in the first stage disposal facility. Therefore, disposal is not possible at domestic low/medium-level disposal facilities. In addition, since the heavy water reactor waste resin mixture is stored at a ratio of about 20% activated carbon and zeolite mixture and about 80% waste resin, mixture extraction and separation technology and C-14 desorption and adsorption technology are required. Accordingly, research and development has been conducted domestically on methods to treat heavy water waste resin, but the waste resin mixture separation method is complex and inefficient, and there are limitations in applying it to the field due to the scale of the equipment being large compared to the field work space. Therefore, we would like to introduce a resin treatment technology that complements the problems of previous research. Previously, the waste resin mixture was extracted from the upper manhole and inspection hole of the storage tank, but in order to improve limitations such as worker safety, cost, and increased work time, the SRHS, which was planned at the time of nuclear power plant design, is utilized. In addition, by capturing high-purity 14CO2 in a liquid state in a high-pressure container, it ensures safety for long-term storage and is easy to handle when necessary, maximizing management efficiency. In addition, the modularization of the waste resin separation and withdrawal process from the storage tank, C-14 desorption and monitoring process, high-concentration 14CO2 capture and storage process, and 14CO2 adsorption process enables separation of each process, making it applicable to narrow work spaces. When this technology is used to treat waste resin mixtures in PHWR, it is expected to demonstrate its value as customized, high-efficiency equipment that can secure field applicability and safety and reflect the diverse needs of consumers according to changes in the working environment.
        6.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Buckwheat (Fagopyrum esculentum), which is a traditional Korean crop, has been known as a health food due to its rich nutrition. This study was conducted to evaluate the change in flavonoid content of flowers and seeds during post-flowering growth of Korean tartary buckwheat variety ‘Hwanggeummiso’, with the aim of providing basic data for the development of functional food and feed additive. Tartary buckwheat took 69 and 99 days from the sowing date to reach the flowering and maturity stages, respectively. As a result of examining the flavonoid components of each part of tartary buckwheat, chlorogenic acid, rutin, and isoquercitrin of flowers increased from the flowering period on 22 May (0 days after flowering) to 42 days after flowering, while quercetin increased until 21 days after flowering and then decreased thereafter. In seeds, chlorogenic acid, rutin, and isoquercitrin were most abundant at the time of seed-bearing on 14 days after flowering, and showed a decreasing tendency thereafter. On the other hand, quercetin showed a tendency to increase until 21 days after flowering and then decrease. Overall, the flavonoid content was higher in flowers than in seeds, with rutin being particularly prominent. Based on this, the possibility as food materials and feed additives was confirmed using buckwheat produced in Korea.
        4,000원
        7.
        2023.05 구독 인증기관·개인회원 무료
        A variety of microorganisms are contained in the groundwater and surrounding environment at the depth of a deep geological repository, and could adversely affect the integrity and/or safety of the facility under certain thermal, hydraulic and chemical conditions. In particular, microbial activity (in the buffer and backfill) around the canister can cause corrosion of the canister through sulfide production by sulfate-reducing bacteria (SRB), and subsequently promote radionuclide release through the corroded part. Namely, this phenomenon is important in a perspective of performance assessment since it will have an impact on the post-closure exposure dose in the biosphere by accelerating radionuclide leakage into the near-field due to deterioration of the canister integrity In Finland, the performance assessment on microbial activity in buffer, backfill, and plug was performed for the licensing. However, in Korea, researches relevant to microbial activity are only in the early stage as of now. Accordingly, in this study, we draw initial considerations for the performance assessment on the phenomenon in the domestic facility based on review results for the methodology carried out as part of operating license application (i.e. SC-OLA). Studies on the performance assessment of microbial activity in Finland were mainly performed: (a) to investigate complex interactions among microorganisms in the repository by analyzing both indigenous and exogenous microorganisms through drilling, geological and geochemical analysis, (b) to identify microbial interactions at the buffer, backfill, and host rock interface for specific microorganisms that may affect activity of other microorganisms and integrity of the repository, (c) to analyze canister corrosion caused by microbial activity, particularly sulfide production by SRB, and (d) to characterize microbial illitization of montmorillonite that could affect permeability, hydraulic conductivity, and structural integrity of the repository. From reviewing studies above, it is judged that studies labelled as (b) through (d) are applicable to the performance assessment of microbial activity for the domestic facility regardless of specific conditions in Korea. However, for study labelled as (a), the following data on reflecting domestic conditions should be additionally obtained: (1) radionuclide inventory and temperature in spent nuclear fuel, (2) swelling pressure and organic carbon content of bentonite, and (3) size, shape, and gas composition of pores in bentonite. Results of this study could be directly applied to the design and performance assessment for buffer and backfill components, provided that input data specific to the domestic disposal facility is prepared for the assessment required.
        12.
        2023.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Crab nebula is widely used as a polarization angle calibrator for single-dish radio observations because of its brightness, high degree of linear polarization, and well-known polarization angle over a wide frequency range. However, the Crab nebula cannot be directly used as a polarization angle calibrator for single-dish observations with the Korean VLBI Network (KVN), because the beam size of the telescopes is smaller than the size of the nebula. To determine the polarization angle of the Crab nebula as seen by KVN, we use 3C 286, a compact polarized extragalactic radio source whose polarization angle is well-known, as a reference target. We observed both the Crab nebula and 3C 286 with the KVN from 2017 to 2021 and find that the polarization angles at the total intensity peak of the Crab nebula (equatorial coordinates (J2000) R.A. = 05h34m32.3804s and Dec = 22◦00′44.0982′′) are 154.2◦ ±0.3◦, 151.0◦ ±0.2◦, 150.0◦ ±1.0◦, and 151.3◦ ±1.1◦ at 22, 43, 86, and 94 GHz, respectively. We also find that the polarization angles at the pulsar position (RA = 05h34m31.971s and Dec = 22◦00′52.06′′) are 154.4◦ ±0.4◦, 150.7◦ ±0.4◦, and 149.0◦ ± 1.0◦ for the KVN at 22, 43, and 86 GHz. At 129 GHz, we suggest to use the values 149.0◦ ± 1.6◦ at the total intensity peak and 150.2◦ ± 2.0◦ at the pulsar position obtained with the Institute for Radio Astronomy in the Millimeter Range (IRAM) 30-meter Telescope. Based on our study, both positions within the Crab nebula can be used as polarization angle calibrators for the KVN single-dish observations.
        4,000원
        13.
        2022.10 구독 인증기관·개인회원 무료
        In addition to Korea, various countries such as the United States, the United Kingdom, France, and China are designing small module-type reactors. In particular, a small modular reactor is the power of 300 MWe or less, in which the main equipment constituting the nuclear reactor is integrated into a single container. Depending on the purpose, small modular reactors are being developed to help daily life such as power, heating supply, and seawater desalination, or for power supply such as icebreakers, nuclear submarines, and spacecraft propellants. Small modular reactors are classified according to form. It can be classified into light-water reactors/ pressurized light-water reactors based on technology proven in commercial reactors, and non-lightwater reactors based on fuel and coolant type such as Sodium-cooled Fast Reactor, High temperature gas-cooled reactor, Very high temperature reactor and Moltenn salt reactor. SMRs, which are designed for various purposes, have the biggest difference from commercial nuclear reactors. The size of SMRs is as small as 1/5 of that of the commercial reactors. Several modules may be installed to generate the same power as commercial reactors. Because of the individually operation for each module, load follow is possible. Also, The reactor can be cooled by natural convection because the size is small enough. It is manufactured as a module, the construction period can be reduced. Depending on the characteristics of these SMRs, application for safeguards is considered. There are many things to consider in terms of safeguards. Therefore, it is IAEA inspection or other approaches for SMRs installed and remotely operated in isolated areas, data integrity for remote monitoring equipment to prevent the diversion of nuclear materials, verification method and material accountancy and control for new fuel types and reactors. Since SMR is more compact and technical intensive, safeguards should be considered at the design stage so that safeguards can be efficiently and effectively implemented, which is called the Safeguards by design (SBD) in the IAEA. In this paper, according to the characteristics of SMR, we will analyze the advantages/disadvantages from the point of view of safeguards and explain what should be considered.
        19.
        2021.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Climate change effects are particularly apparent in many cool-season grasslands in South Korea. Moreover, the probability of climate extremes has intensified and is expected to increase further. In this study, we performed climate change vulnerability assessments in cool-season grasslands based on the analytic hierarchy process method to contribute toward effective decision-making to help reduce grassland damage caused by climate change and extreme weather conditions. In the analytic hierarchy process analysis, vulnerability was found to be influenced in the order of climate exposure (0.575), adaptive capacity (0.283), and sensitivity (0.141). The climate exposure rating value was low in Jeju-do Province and high in Daegu (0.36–0.39) and Incheon (0.33–0.5). The adaptive capacity index showed that grassland compatibility (0.616) is more important than other indicators. The adaptation index of Jeollanam-do Province was higher than that of other regions and relatively low in Gangwon-do Province. In terms of sensitivity, grassland area and unused grassland area were found to affect sensitivity the most with index values of 0.487 and 0.513, respectively. The grassland area rating value was low in Jeju-do and Gangwon-do Province, which had large grassland areas. In terms of vulnerability, that of Jeju-do Province was lower and of Gyeongsangbuk-do Province higher than of other regions. These results suggest that integrating the three aspects of vulnerability (climate exposure, sensitivity, and adaptive capacity) may offer comprehensive and spatially explicit adaptation plans to reduce the impacts of climate change on the cool-season grasslands of South Korea.
        4,000원
        1 2 3 4 5