검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 207

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Black ice, a thin and nearly invisible ice layer on roads and pavements, poses a significant danger to drivers and pedestrians during winter due to its transparency. We propose an efficient black ice detection system and technique utilizing Global Positioning System (GPS)-reflected signals. This system consists of a GPS antenna and receiver configured to measure the power of GPS L1 band signal strength. The GPS receiver system was designed to measure the signal power of the Right-Handed Circular Polarization (RHCP) and Left-Handed Circular Polarization (LHCP) from direct and reflected signals using two GPS antennas. Field experiments for GPS LHCP and RHCP reflection measurements were conducted at two distinct sites. We present a Normalized Polarized Reflection Index (NPRI) as a methodological approach for determining the presence of black ice on road surfaces. The field experiments at both sites successfully detected black ice on asphalt roads, indicated by NPRI values greater than 0.1 for elevation angles between 45o and 55o. Our findings demonstrate the potential of the proposed GPS-based system as a cost-effective and scalable solution for large-scale black ice detection, significantly enhancing road safety in cold climates. The scientific significance of this study lies in its novel application of GPS reflection signals for environmental monitoring, offering a new approach that can be integrated into existing GPS infrastructure to detect widespread black ice in real-time.
        4,000원
        2.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study proposes a soil moisture retrieval method from ground reflection signals received by Global Positioning System (GPS) antenna modules consisting of an up-looking (UP) right-hand circular polarization (RHCP) and two down-looking (DW) RHCP and left-hand circular polarization (LHCP) signals. Field experiments at four different surface types (asphalt, grassland, dry soil, and moist soil) revealed that the DW RHCP and LHCP signals are affected by antenna height and multipath interference signals. The strength differences between the DW LHCP and UP RHCP signals were in good agreement with the DW LHCP signals. Methodologically, this study applied a spectrum analysis to the detrended surface-reflected signals for RHCP and LHCP. The study indicated that the down-looking antenna exhibited greater sensitivity to reflected GPS signals than the up-looking antenna. We demonstrated the feasibility of estimating soil moisture using GPS signals, by comparing LHCP signals received by the down-looking antenna with theoretical values. This study presents a novel method for estimating soil moisture in vegetated areas, leveraging the advantage of crosspolarization comparisons to achieve stronger signal strength than single-polarization reflection signals. With further research, including long-term observations and detailed analysis, the proposed method has the potential to enhance performance significantly.
        4,600원
        8.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The initial development plans for the six reactor designs, soon after the release of Generation IV International Forum (GIF) TRM in 2002, were characterized by high ambition [1]. Specifically, the sodium-cooled fast reactor (SFR) and very-high temperature reactor (VHTR) gained significant attention and were expected to reach the validation stage by the 2020s, with commercial viability projected for the 2030s. However, these projections have been unrealized because of various factors. The development of reactor designs by the GIF was supposed to be influenced by events such as the 2008 global financial crisis, 2011 Fukushima accident [2, 3], discovery of extensive shale oil reserves in the United States, and overly ambitious technological targets. Consequently, the momentum for VHTR development reduced significantly. In this context, the aims of this study were to compare and analyze the development progress of the six Gen IV reactor designs over the past 20 years, based on the GIF roadmaps published in 2002 and 2014. The primary focus was to examine the prospects for the reactor designs in relation to spent nuclear fuel burning in conjunction with small modular reactor (SMR), including molten salt reactor (MSR), which is expected to have spent nuclear fuel management potential.
        4,000원
        9.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Iron is an essential nutrient for mammalian cells. Most iron absorption occurs in the duodenal epithelial cells and is regulated by hepcidin, which is produced and secreted in the liver. High hepcidin levels can cause iron deficiency anemia due to iron absorption failure. Inside the cell, iron conjugates with a porphyrin ring and is placed with an iron coordinated to heme. One of the heme-binding proteins, known as progesterone receptor membrane component 1 (Pgrmc1), is a non-canonical progesterone receptor associated with diverse molecular gene regulation. Previous studies showed that Pgrmc1 is related to iron homeostasis via hepcidin; however, these mechanisms remain to be elucidated. In the present study, to investigate the role of Pgrmc1 in mammalian iron metabolism, we introduced Pgrmc1 knockout (KO) mice and performed molecular biological analyses using qPCR and western blotting. Pgrmc1 deficiency decreased Hamp mRNA expression and hepcidin protein levels. However, Pgrmc1 deficiency failed to decrease Hamp transcript expression and hepcidin protein levels in siPGRMC1-transfected HepG2 cells and primary Pgrmc1 KO hepatocytes, respectively. PGRMC1 knockdown cells revealed low HAMP mRNA levels upon cyclic AMP (cAMP) activation, suggesting that PGRMC1 promotes HAMP mRNA transcription via cAMP activation. It has been implicated that hepatic Pgrmc1 cannot control hepcidin directly; however, the internal environment caused by the lack of Pgrmc1 may potentially cause low hepcidin levels.
        4,000원
        10.
        2023.11 구독 인증기관·개인회원 무료
        The nuclear fuel that melted during the Fukushima nuclear accident in 2011 is still being cooled by water. In this process, contaminated water containing radioactive substances such as cesium and strontium is generated. The total amount of radioactive pollutants released by the natural environment due to the nuclear accident in Fukushima in 2011 is estimated to be 900 PBq, of which 10 to 37 PBq for cesium. Radioactive cesium (137Cs) is a potassium analog that exists in the water in the form of cations with similar daytime behavior and a small hydration radius and is recognized as a radioactive nuclide that has the greatest impact on the environment due to its long half-life (about 30 years), high solubility and diffusion coefficient, and gamma-ray emission. In this study, alginate beads were designed using Prussian blue, known as a material that selectively adsorbs cesium for removal and detection of cesium. To confirm the adsorption performance of the produced Prussian blue, immersion experiments were conducted using Cs standard solution, and MCNP simulations were performed by modeling 1L reservoir to conduct experiments using radioactive Cs in the future. An adsorption experiment was conducted with water containing standard cesium solution using alginate beads impregnated with Prussian blue. The adsorption experiment tested how much cesium of the same concentration was adsorbed over time. As a result, it was found that Prussian blue beads removed about 80% of cesium within 10-15 minutes. In addition, MCNP simulation was performed using a 1 L reservoir and a 3inch NaI detector to optimize the amount of Prussian blue. The results of comparing the efficiency according to the Prussian volume was shown. It showed that our designed system holds great promise for the cleanup and detection of radioactive cesium contaminated seawater around nuclear plants and/or after nuclear accidents. Thus, this work is expected to provide insights into the fundamental MCNP simulation based optimization of Prussian blue for cesium removal and this work based MCNP simulation will pave the way for various practical applications.
        11.
        2023.11 구독 인증기관·개인회원 무료
        APro, a process-based total system performance assessment (TSPA) tool for a geological disposal system, has a framework for simulating the radionuclide transport affected by thermal, hydraulic, mechanical or geochemical changes occurred in the disposal system. APro aims to be applied for the TSPA to long-term (> 100,000) evolution scenarios in real-world repository having more than 10,000 boreholes. In this large-scale TSPA, it is important not only to develop a high-performance numerical approach, but also to apply an efficient post-processing approach to massive spatiotemporal data. The post-processing refers to validating numerical analysis results, analyzing and evaluating target systems through data processing or visualization. Since APro uses COMSOL interface, the postprocessing function in COMSOL can be used. However, when the data size increases due to largescale numerical analysis, the time for the COMSOL post-processing increases, resulting in a problem that the analysis and evaluation are not performed effectively. In this case, it is possible to extract necessary data using the COMSOL exporting function and importing it into an external postprocessing program for the analysis and evaluation. In this study, the efficiency of external post-processing with extracted data from COMSOL was reviewed. And, we derived a proper data extraction approach (format and structure) that can increase efficiency of external post-processing.
        12.
        2023.11 구독 인증기관·개인회원 무료
        The radionuclide management process is a conditioning technology to reduce the burden of spent fuel management, and refers to a process that can separate and recover radionuclides having similar properties from spent fuels. In particular, through the radionuclide management process, high heat- emitting, high mobility, and high toxicity radionuclides, which have a significant impact on the performance of disposal system, are separated and managed. The performance of disposal system is closely related to properties (decay heat and radioactivity) of radioactive wastes from the radionuclide management process, and the properties are directly linked to the radionuclide separation ratio that determines the composition of radionuclides in waste flow. The Korea Atomic Energy Research Institute have derived process flow diagrams for six candidates for the radionuclide management process, weighing on feasibility among various process options that can be considered. In addition, the GoldSim model has been established to calculate the mass and properties of waste from each unit process of the radionuclides management process and to observe their time variations. In this study, the candidates for the radionuclide management process are evaluated based on the waste mass and properties by using the GoldSim model, and sensitivity analysis changing the separation ratio are performed. And the effect of changes in the separation ratio for highly sensitive radionuclides on waste management strategy is analyzed. In particular, the separation ratio for high heat-emitting radionuclides determines the period of long-term decay storage.
        14.
        2023.07 구독 인증기관 무료, 개인회원 유료
        This study examines the impact of digital payment methods on consumer spending, highlighting adoption's moderating role. A two-phase approach, involving 741 survey participants and 166,151 customer records, reveals that digital payments increase willingness to pay and total spending compared to credit cards. Adoption plays a pivotal role, with simple payment users showing significantly higher credit card usage than non-users.
        4,000원
        15.
        2023.05 구독 인증기관·개인회원 무료
        Some consumer goods containing radioactive substances are in circulation and used in everyday life. In accordance with the Nuclear Safety Act, consumer goods with radioactivity are regulated. However, since most consumer goods distributed in Korea have no information that can confirm the amount of radiation, it is necessary to analyze the radiation for safety regulation. Among these consumer goods, GTLS (Gaseous Tritium Light Source) contains gaseous tritium (tritium, written as 3H or T), which is a radioactive material. The gaseous composition ratio in GTLS was analyzed using a precision gas mass spectrometer (Thermo Fisher, model MAT 271). As a result of GTLS analysis, the H2, HD or H3 +(T) or 3He, HT or D2 or He, DT, and T2, which correspond to the mass-to-charge ratio (m/z) 2 to 6 and the air components were detected. In addition, substances corresponding to m/z=24 and m/z=21 were also detected. These were compared with pure CH4 and those fragmentation patterns. The ratios of CT4 (m/z = 24) to CT3 (m/z = 21) and CH4 (m/z = 16) to CH3 (m/z = 15) were compared and they agree within the measurement uncertainty. We also performed additional experiments to separate the water component in the GTLS samples, considering the possibility that the m/z = 21 to m/z = 24 region is tritium compounds based on H2O. Despite the removal of the water components, peaks were detected at m/z=21 and m/z=24. Therefore, we confirmed that the component of m/z = 24 in the GTLS sample was CT4.
        16.
        2023.05 구독 인증기관·개인회원 무료
        The most important thing in development of a process-based TSPA (Total System Performance Assessment) tool for large-scale disposal systems (like APro) is to use efficient numerical analysis methods for the large-scale problems. When analyzing the borehole in which the most diverse physical phenomena occur in connection with each other, the finest mesh in the system is applied to increase the analysis accuracy. Since thousands of such boreholes would be placed in the future disposal system, the numerical analysis for the system becomes significantly slower, or even impossible due to the memory problem in cases. In this study, we propose a tractable approach, so called global-local iterative analysis method, to solve the large-scale process-based TSPA problem numerically. The global-local iterative analysis method goes through the following process: 1) By applying a coarse mesh to the borehole area the size of the problem of global domain (entire disposal system) is reduced and the numerical analysis is performed for the global domain. 2) Solutions in previous step are used as a boundary condition of the problem of local domain (a unit space containing one borehole and little part of rock), the fine mesh is applied to the borehole area, and the numerical analysis is performed for each local domain. 3) Solutions in previous step are used as boundary conditions of boreholes in the problem of global domain and the numerical analysis is performed for the global domain. 4) steps 2) and 3) are repeated. The solution derived by the global-local iterative analysis method is expected to be closer to the solution derived by the numerical analysis of the global problem applying the fine mesh to boreholes. In addition, since local problems become independent problems the parallel computing can be introduced to increase calculation efficiency. This study analyzes the numerical error of the globallocal iterative analysis method and evaluates the number of iterations in which the solution satisfies the convergence criteria. And increasing computational efficiency from the parallel computing using HPC system is also analyzed.
        17.
        2023.05 구독 인증기관·개인회원 무료
        Korea Atomic Energy Research Institute is developing a radionuclide management processes as a conditioning technology to reduce the burden of spent fuel disposal. The radionuclide management process refers to a process managing radionuclides with similar properties by introducing various technology options that can separate and recover radionuclides from spent fuels. In particular, it is a process aimed at increasing disposal efficiency by managing high-heat, high-mobility, and high-toxic radionuclides that can greatly affect the performance of the disposal system. Since the radionuclide management process seeks to consider various technology options for each unit process, it may have several process flows rather than have a single process flow. Describing the various process flows as a single flow network model is called the superstructure model. In this study, we intend to develop a superstructure model for the radionuclide management process and use it as a model to select the optimal process flow. To find the optimal process flow, an objective function must be defined, and at the fuel cycle system level multiple objectives such as effectiveness (disposal area), safety (explosure dose), and economics (cost) can be considered. Before performing the system-level optimization, it is necessary to select candidates of process flow in consideration of waste properties and process efficiency at the process level. In this study, a sensitivity analysis is conducted to analyze changes in waste properties such as decay heat and radioactivity when the separation ratio varies due to the performance change for each unit process of the radionuclide management process. Through this analysis, it is possible to derive a performance range that can have waste properties suitable for following waste treatment, especially waste form manufacturing. It is also possible to analyze the effect of waste properties that vary according to the performance change on waste storage and management approaches.
        1 2 3 4 5