본 연구는 옥수수 재배 시 환경에 영향을 미치는 노균병 저항성과 관련된 유전자 후보군을 탐색해서 노균병으로 인한 토양오염과 옥수수 생산량 감소를 해결하기 위하여 노균병 저항성 품종을 효율적으로 발굴하기 위한 연구이다. 옥수수의 6번 염색체의 152,892,333과 154,335,437 사이에 있는 노균병 저항성 유전자를 탐색하였으며 이 부분에 존재할 것으로 예상되는 전사체에서 38개의 프라이머 세트를 디자인하여 이 중 16개의 예측 전사체를 가려 내었다. 또한 RT-PCR을 수행하여 감염된 Ki11의 발현이 높은 7개의 전사체로 5개의 품종에 대하여 건강한 샘플과 감염된 샘플을 검정하였고 최종 5개의 후보 유전자군[알려지지 않은 미확인 유전자 2개, OFP transcription factor, bZIP transcription factor, pentatricopeptide repeat (Ppr)]이 발견 되었다. 본 연구의 결과로 추가적인 실험 설계를 통해 5개의 후보 유전자군에 대한 재검정을 통하여 확실한 노균병 저항성 유전자를 발굴하고 이를 노균병 저항성 품종 개발 및 방재에 이용할 수 있을 것으로 사료된다.
Drought is one of important environmental stress for plant. Drought has deleterious effect to plant growth including maize (Zea mays L.) such as vegetative and/or reproductive growth, root extension, photosynthesis efficiency, flowering, anthesis-silking interval (ASI), fertilization, and grain filling. In this study, we screened drought tolerant maize in 21 cultivars from different sources, sixteen NAM parent lines (B73, CML103, CML228, CML247, CML277, CML322, CML333, CML69, Ki11, Ki3, Ky21, M37W, Mo18w, NC350, Oh43 and Tx303), four Korean hybrids (Cheongdaok, Gangdaok, Kwangpyeongok and Pyeonganok) and one Southeast Asian genotype (DK9955). Drought stress (DS) index was evaluated with leaf rolling score at seedling stage and ASI at silking date. The leaf rolling scoring of CML228, DK9955 and Ki11 were determined 1.28, 1.85, 1.86, respectively. However, M37W, Kwangpyeongok, B73 and NC350 were determined over the 3. ASI analysis revealed that CML228, CML103, Cheongdaok, NC350, B73, CML322, Kwangpyeongok and Ki11 are represented less than 5 days under DS and less than 3 days of difference between DS and well-watered (WW), but CML69, Ki3, Pyeonganok, M37W, Mo18w and Gangdaok were represented more than 10 days under DS and more than 8 days of difference between DS and WW. Multi-Dimensional Scaling (MDS) analysis determined CML228, Ki11, and CML322 were regarded as drought tolerance cultivars. Eventually, Ki11 showed genetic similarity with Korean cultivars by QTL analysis and MDS analysis. Ki11 has a potential for development of drought tolerance maize with Korean cultivars.
1998년 7월부터 10월까지 약 4개월간 질병매개모기 및 뇌염다발지역인 전라남도 영암군 덕진면 소재 약 30,000M2의 자연수답을 선정, 이에 서식하는 질병매개모기인 중국얼룩날개모기(Anopheles sinensis)와 작은빨간집모기(Culex tritaeniorhynchus)를 대상으로 포식천적어송사리(Aplocheilus latipes) 및 왜몰개(Aphyocypris chinensis)방사와 미생물제제(Bacillus thuringensis H-14)를 병합처리하여 방제효과를 조사하였다. 포식천적어송사리가 0.6fish/TEXM2/TEX가 존재하는 논에서는 7월부터 8월까지 55.0~57.6%의 자연 방제가 이루어졌으며, 한 표본당 평균 10마리 이상으로 증가될 때 미생물제제(B.t. H-14)를 1Kg/ha의 농도로 처리한 결과, 24시간후 100%의 방제를 보였으며, 10월 11일 본 실험이 끝날 때까지 98%의 방제율을 유지하였다. 천적어가 존재하지 않는 논에서는 수면 1TEXM2/TEX 당 1.5마리의 비율로 포식어(Aphyocypris)를 방사한 결과 9월 21일(방사후 2주)까지 88.2~96.7%의 만족할 만한 방제율을 유지하였다. 천적어가 존재하지 않는 또 다른 논에서 미생물제제(B.t. H-14)를 1Kg/ha의 농도로 단독 처리한 결과, 24시간 후 100%의 방제율을 보였으나, 7일 후에는 개체군밀도의 회복현상을 나타내었으며 B.t.(H-14) 2차 처리후 모기유충의 개체군밀도를 억제할 수 있었다.
We screened the drought tolerant maize using seventeen maize genotypes from different sources, nine inbred genotypes from United States Department of Agriculture (USDA) (B73, CML103, CML228, CML277, CML322, CML69, Ki3, Ki11, and NC350), three Southeast Asian genotypes (DK9955, LVN-4, and 333), and five Korean hybrids (Cheongdaok, Gangdaok, Ilmichal, Kwangpyeongok, and Pyeonganok). We evaluated anthesis-silking interval (ASI), leaf senescence (LS), ears per plant (EPP), tassel length (TL), and fresh weight (FW) at silking date. According to ASI and LS examination, CML103 and Kill were drought tolerant genotypes, wheareas Ki3 and 333 were drought susceptible. EPP, TL, and FW differed according to drought resistance. Grain yield was correlated strongly with ASI, but moderately with LS. Difference in ASI between drought-stressed (DS) and well-watered (WW) conditions was less than three days in CML228, CML103, Cheongdaok, NC350, B73, Ki11, CML322, and Kwangpyeongok, whereas that of Ki3, Pyeonganok, and Gangdaok was more than 6.5 days. We concluded that CML228, CML103, Cheongdaok, NC350, B73, Ki11, CML322, and Kwangpyeongok are drought tolerant genotypes, whereas Ki3, Pyeonganok, and Gangdaok are drought susceptible.
This study was conducted to evaluate maize downy mildew resistance using spreader row technique in Cambodia. A total of forty maize lines were used in this experiment. Seven Korean varieties and seven breeding lines showed high infection rates (80~100%) and highly susceptible (HS) to downy mildew disease in both spring and fall. Also most of nested association mapping (NAM) parent lines were highly susceptible (HS). Meanwhile three inbred lines, Ki3, Ki11, and CML228, showed highly resistant (HR) or resistant (R) in spring and moderately resistant (MR) in fall. These three lines were already known as resistant inbred lines against downy mildew disease. It appears that spreader row technique was suitable for selection of maize downy mildew resistance in Cambodia. The incidence of downy mildew was influenced by weather conditions, especially relative humidity and temperature. Among several inoculation methods to screen for downy mildew resistance, this spreader row technique is effectively and easily used in the field of Southeast Asia.
Next generation sequencing technologies provide opportunities to reveal the genetic variants and differentially expressedgenes. The genetic variants are closely relevance to understanding of genes and phenotypic differences related to agronomic characteristics among cultivars. In this study, we conducted RNA-seq using two Korean soybean accessions, including Daewon and Hwangkeum, by using next generation sequencing against Williams 82 genome as reference. A number of variants such assingle nucleotide variants (SNV), multiple nucleotide variants (MNV), insertion/deletion (InDel) and replacement, was 34,411 and 55,544 in Daewon and Hwangkeum, respectively. Among these variants, 9,611 nonsynonymous variants were detected within 4,290 genes in Daewon and 13,225 non-synonymous variants were located on 5,672 genes in Hwangkeum. The distribution of nonsynonymous variants and expression values of genes can serve as invaluable resource for genotyping and study of traits within genes for soybean improvements.
The objective of this study was to evaluate the drought tolerance in maize seedling using leaf rolling. Nineteen maize resources, seven Nested Association Mapping parents lines, six Korean commercial cultivars, and six Southeast Asia commercial cultivars, were used to examine drought tolerance. The leaf rolling scores were measured on each leaf in three stress conditions with moderate drought (10%), severe drought (7%), and extreme drought (5%). Generally leaf rolling score of seedlings increased at the lower soil water potentials (5~7%). As a result, drought-tolerant cultivars showed lower leaf rolling score (below 2.5) than the drought sensitive cultivars (above 3.5). Nine varieties, NK4043, CML322, DK9955, NK4300, Ki11, DK8868, CML228, LVN99, and LVN10, have been selected for tolerance to drought stress. These results suggest that the leaf rolling score in maize seedling has been made available to indirect index for drought tolerance.