검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Epididymal sperm cryopreservation provides a potential method for preserving genetic material from males of endangered species. This pilot study was conducted to develop a freezing method for tiger epididymal sperm. We evaluated post-thaw sperm condition using testes with intact epididymides obtained from a Siberian tiger (Panthera tigris altaica ) after castration. The epididymis was chopped in Tyrode's albumin-lactate-pyruvate 1x and incubated at 5% CO2, 95% air for 10 min. The Percoll separation density gradient method was used for selective recovery of motile spermatozoa after sperm collection using a cell strainer. The spermatozoa were diluted with modified Norwegian extender supplemented with 20 mM trehalose (extender 1) and subsequent extender 2 (extender 1 with 10% glycerol) and frozen using LN2 vapor. After thawing at 37℃ for 25 s, Isolate® solution was used for more effective recovery of live sperm. Sperm motility (computerized assisted sperm analysis, CASA), viability (SYBR-14 and Propidium Iodide) and acrosome integrity (Pisum sativum agglutinin with FITC) were evaluated. The motility of tiger epididymal spermatozoa was 40.1 ± 2.0%, and progressively motile sperm comprised 32.7 ± 2.3%. Viability was 56.3 ± 1.6% and acrosome integrity was 62.3 ± 4.4%. Cryopreservation of tiger epididymal sperm using a modified Norwegian extender and density gradient method could be effective to obtain functional spermatozoa for future assisted reproductive practices in endangered species.
        4,000원
        2.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sperm cryopreservation is a fundamental process for the long-term conservation of livestock genetic resources. Yet, the packaging method has been shown, among other factors, to affect the frozen-thawed (FT) sperm quality. This study aimed to develop a new mini-straw for sperm cryopreservation. In addition, the kinematic patterns, viability, acrosome integrity, and mitochondrial membrane potential (MMP) of boar spermatozoa frozen in the developed 0.25 mL straw, 0.25 mL (minitube, Germany), or 0.5 mL (IMV technologies, France) straws were assessed. Postthaw kinematic parameters were not different (experiment 1: total motility (33.89%, 32.42%), progressive motility (19.13%, 19.09%), curvilinear velocity (42.32, 42.86), and average path velocity (33.40, 33.62) for minitube and the developed straws, respectively. Further, the viability (38.56%, 34.03%), acrosome integrity (53.38%, 48.88%), MMP (42.32%, 36.71%) of spermatozoa frozen using both straw were not differ statistically (p > 0.05). In experiment two, the quality parameters for semen frozen in the developed straw were compared with the 0.5 mL IMV straw. The total motility (41.26%, 39.1%), progressive motility (24.62%, 23.25%), curvilinear velocity (46.44, 48.25), and average path velocity (37.98, 39.12), respectively, for IMV and the developed straw, did not differ statistically. Additionally, there was no significant difference in the viability (39.60%, 33.17%), acrosome integrity (46.23%, 43.23%), and MMP (39.66, 32.51) for IMV and the developed straw, respectively. These results validate the safety and efficiency of the developed straw and highlight its great potential for clinical application. Moreover, both 0.25 mL and 0.5 mL straws fit the present protocol for cryopreservation of boar spermatozoa.
        4,000원